Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
1.
Cell ; 179(4): 880-894.e10, 2019 10 31.
Artigo em Inglês | MEDLINE | ID: mdl-31668804

RESUMO

Current approaches to reducing the latent HIV reservoir entail first reactivating virus-containing cells to become visible to the immune system. A critical second step is killing these cells to reduce reservoir size. Endogenous cytotoxic T-lymphocytes (CTLs) may not be adequate because of cellular exhaustion and the evolution of CTL-resistant viruses. We have designed a universal CAR-T cell platform based on CTLs engineered to bind a variety of broadly neutralizing anti-HIV antibodies. We show that this platform, convertibleCAR-T cells, effectively kills HIV-infected, but not uninfected, CD4 T cells from blood, tonsil, or spleen and only when armed with anti-HIV antibodies. convertibleCAR-T cells also kill within 48 h more than half of the inducible reservoir found in blood of HIV-infected individuals on antiretroviral therapy. The modularity of convertibleCAR-T cell system, which allows multiplexing with several anti-HIV antibodies yielding greater breadth and control, makes it a promising tool for attacking the latent HIV reservoir.


Assuntos
Anticorpos Anti-Idiotípicos/farmacologia , Infecções por HIV/terapia , Imunoterapia Adotiva , Replicação Viral/genética , Animais , Anticorpos Anti-Idiotípicos/imunologia , Células HEK293 , Infecções por HIV/genética , Infecções por HIV/imunologia , Infecções por HIV/virologia , HIV-1/imunologia , HIV-1/patogenicidade , Humanos , Camundongos , Tonsila Palatina/imunologia , Tonsila Palatina/metabolismo , Cultura Primária de Células , Baço/imunologia , Baço/metabolismo , Linfócitos T Citotóxicos/imunologia , Latência Viral/imunologia , Replicação Viral/imunologia
2.
J Virol ; 95(8)2021 03 25.
Artigo em Inglês | MEDLINE | ID: mdl-33536176

RESUMO

An ability to activate latent HIV-1 expression could benefit many HIV cure strategies, but the first generation of latency reversing agents (LRAs) has proven disappointing. We evaluated AKT/mTOR activators as a potential new class of LRAs. Two glycogen synthase kinase-3 inhibitors (GSK-3i's), SB-216763 and tideglusib (the latter already in phase II clinical trials) that activate AKT/mTOR signaling were tested. These GSK-3i's reactivated latent HIV-1 present in blood samples from aviremic individuals on antiretroviral therapy (ART) in the absence of T cell activation, release of inflammatory cytokines, cell toxicity, or impaired effector function of cytotoxic T lymphocytes or NK cells. However, when administered in vivo to SIV-infected rhesus macaques on suppressive ART, tideglusib exhibited poor pharmacodynamic properties and resulted in no clear evidence of significant SIV latency reversal. Whether alternative pharmacological formulations or combinations of this drug with other classes of LRAs will lead to an effective in vivo latency-reversing strategy remains to be determined.IMPORTANCE If combined with immune therapeutics, latency reversing agents (LRAs) have the potential to reduce the size of the reservoir sufficiently that an engineered immune response can control the virus in the absence of antiretroviral therapy. We have identified a new class of LRAs that do not induce T-cell activation and that are able to potentiate, rather than inhibit, CD8+ T and NK cell cytotoxic effector functions. This new class of LRAs corresponds to inhibitors of glycogen synthase kinase-3. In this work, we have also studied the effects of one member of this drug class, tideglusib, in SIV-infected rhesus monkeys. When tested in vivo, however, tideglusib showed unfavorable pharmacokinetic properties, which resulted in lack of SIV latency reversal. The disconnect between our ex vivo and in vivo results highlights the importance of developing next generation LRAs with pharmacological properties that allow systemic drug delivery in relevant anatomical compartments harboring latent reservoirs.

3.
PLoS Pathog ; 16(4): e1008450, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32353080

RESUMO

The primary reservoir for HIV is within memory CD4+ T cells residing within tissues, yet the features that make some of these cells more susceptible than others to infection by HIV is not well understood. Recent studies demonstrated that CCR5-tropic HIV-1 efficiently enters tissue-derived memory CD4+ T cells expressing CD127, the alpha chain of the IL7 receptor, but rarely completes the replication cycle. We now demonstrate that the inability of HIV to replicate in these CD127-expressing cells is not due to post-entry restriction by SAMHD1. Rather, relative to other memory T cell subsets, these cells are highly prone to undergoing latent infection with HIV, as revealed by the high levels of integrated HIV DNA in these cells. Host gene expression profiling revealed that CD127-expressing memory CD4+ T cells are phenotypically distinct from other tissue memory CD4+ T cells, and are defined by a quiescent state with diminished NFκB, NFAT, and Ox40 signaling. However, latently-infected CD127+ cells harbored unspliced HIV transcripts and stimulation of these cells with anti-CD3/CD28 reversed latency. These findings identify a novel subset of memory CD4+ T cells found in tissue and not in blood that are preferentially targeted for latent infection by HIV, and may serve as an important reservoir to target for HIV eradication efforts.


Assuntos
Linfócitos T CD4-Positivos/imunologia , Infecções por HIV/imunologia , HIV-1/fisiologia , Subunidade alfa de Receptor de Interleucina-7/imunologia , Linfócitos T CD4-Positivos/virologia , Infecções por HIV/genética , Infecções por HIV/virologia , HIV-1/genética , Interações Hospedeiro-Patógeno , Humanos , Memória Imunológica , Subunidade alfa de Receptor de Interleucina-7/genética , Latência Viral , Replicação Viral
4.
Biochemistry ; 58(6): 818-832, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30602116

RESUMO

The human immunodeficiency virus enters its host cells by membrane fusion, initiated by the gp41 subunit of its envelope protein. gp41 has also been shown to bind T-cell receptor (TCR) complex components, interfering with TCR signaling leading to reduced T-cell activation. This immunoinhibitory activity is suggested to occur during the membrane fusion process and is attributed to various membranotropic regions of the gp41 ectodomain and to the transmembrane domain. Although extensively studied, the cytosolic region of gp41, termed the cytoplasmic tail (CT), has not been examined in the context of immune suppression. Here we investigated whether the CT inhibits T-cell activation in different T-cell models by utilizing gp41-derived peptides and expressed full gp41 proteins. We found that a conserved region of the CT, termed lentiviral lytic peptide 2 (LLP2), specifically inhibits the activation of mouse, Jurkat, and human primary T-cells. This inhibition resulted in reduced T-cell proliferation, gene expression, cytokine secretion, and cell surface expression of CD69. Differential activation of the TCR signaling cascade revealed that CT-based immune suppression occurs downstream of the TCR complex. Moreover, LLP2 peptide treatment of Jurkat and primary human T-cells impaired Akt but not NFκB and ERK1/2 activation, suggesting that immune suppression occurs through the Akt pathway. These findings identify a novel gp41 T-cell suppressive element with a unique inhibitory mechanism that can take place post-membrane fusion.


Assuntos
Proteína gp41 do Envelope de HIV/imunologia , HIV-1/imunologia , Ativação Linfocitária/imunologia , Linfócitos T/imunologia , Motivos de Aminoácidos , Animais , Proliferação de Células , Citocinas/genética , Citocinas/metabolismo , Expressão Gênica , Proteína gp41 do Envelope de HIV/química , Humanos , Células Jurkat , Camundongos , Camundongos Endogâmicos C57BL , Fosforilação , Domínios Proteicos , Proteínas Proto-Oncogênicas c-akt/química , Proteínas Proto-Oncogênicas c-akt/metabolismo , Células RAW 264.7 , Transdução de Sinais , Linfócitos T/metabolismo , Linfócitos T/virologia , Serina-Treonina Quinases TOR/química , Serina-Treonina Quinases TOR/metabolismo
5.
PLoS Pathog ; 10(8): e1004248, 2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-25121610

RESUMO

HIV-1 uses a number of means to manipulate the immune system, to avoid recognition and to highjack signaling pathways. HIV-1 infected cells show limited Toll-Like Receptor (TLR) responsiveness via as yet unknown mechanisms. Using biochemical and biophysical approaches, we demonstrate that the trans-membrane domain (TMD) of the HIV-1 envelope (ENV) directly interacts with TLR2 TMD within the membrane milieu. This interaction attenuates TNFα, IL-6 and MCP-1 secretion in macrophages, induced by natural ligands of TLR2 both in in vitro and in vivo models. This was associated with decreased levels of ERK phosphorylation. Furthermore, mutagenesis demonstrated the importance of a conserved GxxxG motif in driving this interaction within the membrane milieu. The administration of the ENV TMD in vivo to lipotechoic acid (LTA)/Galactosamine-mediated septic mice resulted in a significant decrease in mortality and in tissue damage, due to the weakening of systemic macrophage activation. Our findings suggest that the TMD of ENV is involved in modulation of the innate immune response during HIV infection. Furthermore, due to the high functional homology of viral ENV proteins this function may be a general character of viral-induced immune modulation.


Assuntos
HIV-1/imunologia , Evasão da Resposta Imune/imunologia , Receptor 2 Toll-Like/metabolismo , Proteínas do Envelope Viral/imunologia , Proteínas do Envelope Viral/metabolismo , Animais , Western Blotting , Linhagem Celular , Dimerização , Feminino , Transferência Ressonante de Energia de Fluorescência , Infecções por HIV/imunologia , HIV-1/metabolismo , Imunidade Inata/imunologia , Ativação de Macrófagos/fisiologia , Macrófagos/imunologia , Proteínas de Membrana/imunologia , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Estrutura Terciária de Proteína/fisiologia , Reação em Cadeia da Polimerase Via Transcriptase Reversa
6.
Cell Microbiol ; 16(10): 1565-81, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-24844300

RESUMO

Enveloped viruses often use membrane lipid rafts to assemble and bud, augment infection and spread efficiently. However, the molecular bases and functional consequences of the partitioning of viral glycoproteins into microdomains remain intriguing questions in virus biology. Here, we measured Foerster resonance energy transfer by fluorescence lifetime imaging microscopy (FLIM-FRET) to study the role of distinct membrane proximal regions of the human immunodeficiency virus glycoprotein gp41 for lipid raft partitioning in living Chinese hamster ovary cells (CHO-K1). Gp41 was labelled with a fluorescent protein at the exoplasmic face of the membrane, preventing any interference of the fluorophore with the proposed role of the transmembrane and cytoplasmic domains in lateral organization of gp41. Raft localization was deduced from interaction with an established raft marker, a fluorescently tagged glycophosphatidylinositol anchor and the cholesterol recognition amino acid consensus (CRAC) was identified as the crucial lateral sorting determinant in CHO-K1 cells. Interestingly, the raft association of gp41 indicates a substantial cell-to-cell heterogeneity of the plasma membrane microdomains. In complementary fluorescence polarization microscopy, a distinct CRAC requirement was found for the oligomerization of the gp41 variants. Our data provide further insight into the molecular basis and biological implications of the cholesterol dependent lateral sorting of viral glycoproteins for virus assembly at cellular membranes.


Assuntos
Colesterol/metabolismo , Proteína gp41 do Envelope de HIV/metabolismo , Microdomínios da Membrana/virologia , Animais , Células CHO , Linhagem Celular , Membrana Celular/metabolismo , Cricetinae , Cricetulus , Transferência Ressonante de Energia de Fluorescência , Infecções por HIV/transmissão , HIV-1/patogenicidade , Microscopia de Fluorescência , Estrutura Terciária de Proteína , Ligação Viral
7.
Nanomedicine ; 11(8): 1985-92, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26115636

RESUMO

Macrophage immune functions such as antibody-mediated phagocytosis are strongly impaired in individuals affected by HIV-1. Nevertheless, infected macrophages are still able to phagocytose apoptotic cells. For this reason, we recently developed antibody-decorated phosphatidylserine (PS)-containing liposomes that bind HIV-1 virus-like particles and, by mimicking apoptotic cells, are efficiently internalized by macrophages. In the context of an in vivo application, it would be extremely important to initially protect immunoliposomes from macrophages, in order to provide enough time to redistribute through the body and achieve maximum virus binding. To this end, we have designed asymmetric immunoliposomes in which the PS is initially confined to the inner leaflet and thus cannot be recognized by macrophages. Spontaneous PS flip-flop to the outer surface leads to a time-delay in internalization by macrophages in vitro. Such a delay can be fine-tuned by altering the molecular composition of the immunoliposomes. FROM THE CLINICAL EDITOR: In the fight against HIV-1, macrophage plays an important role. Ironically, the phagocytic functions of these cells are often impaired by HIV-1. In this interesting article, the authors described the development of asymmetric liposomes, which would bind HIV-1 with prolonged systemic circulation, such that the clearance of virus by macrophages is enhanced. This system represents a promising effective approach to utilize the phagocytic capability of macrophages.


Assuntos
Anticorpos Monoclonais/imunologia , Infecções por HIV/imunologia , HIV-1/imunologia , Lipossomos/imunologia , Macrófagos/virologia , Fosfatidilserinas/imunologia , Produtos do Gene env do Vírus da Imunodeficiência Humana/imunologia , HIV-1/isolamento & purificação , Humanos , Macrófagos/imunologia , Fagocitose
8.
Nanomedicine ; 10(5): 981-9, 2014 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-24589930

RESUMO

Macrophages represent an important cellular target of HIV-1. Interestingly, they are also believed to play a potential role counteracting its infection. However, HIV-1 is known to impair macrophage immune functions such as antibody-mediated phagocytosis. Here, we present immunoliposomes that can bind HIV-1 virus-like particles (HIV-VLPs) while being specifically phagocytosed by macrophages, thus allowing the co-internalization of HIV-VLPs. These liposomes are decorated with anti-Env antibodies and contain phosphatidylserine (PS). PS mediates liposome internalization by macrophages via a mechanism not affected by HIV-1. Hence, PS-liposomes mimic apoptotic cells and are internalized into the macrophages due to specific recognition, carrying the previously bound HIV-VLPs. With a combination of flow cytometry, confocal live-cell imaging and electron microscopy we demonstrate that the PS-immunoliposomes presented here are able to elicit efficient HIV-VLPs phagocytosis by macrophages and might represent a new nanotechnological approach to enhance HIV-1 antigen presentation and reduce the ongoing inflammation processes. FROM THE CLINICAL EDITOR: This team of authors demonstrate that specific phosphatidylserin immunoliposomes are able to elicit efficient phagocytosis of HIV-virus-like particle by macrophages and might represent a new nanomedicine approach to enhance HIV-1 antigen presentation and reduce ongoing inflammation processes.


Assuntos
Anticorpos/química , Lipossomos/química , Lipossomos/farmacologia , Macrófagos/efeitos dos fármacos , Fagocitose/efeitos dos fármacos , Fosfatidilserinas/química , Anticorpos/imunologia , Apoptose/efeitos dos fármacos , Linhagem Celular , Produtos do Gene env/imunologia , Infecções por HIV , Humanos , Microscopia de Fluorescência
9.
Langmuir ; 27(17): 10820-9, 2011 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-21819046

RESUMO

The development of targeted and triggerable delivery systems is of high relevance for anticancer therapies. We report here on reduction-sensitive liposomes composed of a novel multifunctional lipidlike conjugate, containing a disulfide bond and a biotin moiety, and natural phospholipids. The incorporation of the disulfide conjugate into vesicles and the kinetics of their reduction were studied using dansyl-labeled conjugate 1 in using the dansyl fluorescence environmental sensitivity and the Förster resonance energy transfer from dansyl to rhodamine-labeled phospholipids. Cleavage of the disulfide bridge (e.g., by tris(2-carboxyethyl)phosphine (TCEP), dithiothreitol (DTT), l-cysteine, or glutathione (GSH)) removed the hydrophilic headgroup of the conjugate and thus changed the membrane organization leading to the release of entrapped molecules. Upon nonspecific uptake of vesicles by macrophages, calcein release from reduction-sensitive liposomes consisting of the disulfide conjugate and phospholipids was more efficient than from reduction-insensitive liposomes composed only of phospholipids. The binding of streptavidin to the conjugates did not interfere with either the subsequent reduction of the disulfide bond of the conjugate or the release of entrapped molecules. Breast cancer cell line BT-474, overexpressing the HER2 receptor, showed a high uptake of the reduction-sensitive doxorubicin-loaded liposomes functionalized with the biotin-tagged anti-HER2 antibody. The release of the entrapped cargo inside the cells was observed, implying the potential of using our system for active targeting and delivery.


Assuntos
Neoplasias da Mama/metabolismo , Doxorrubicina/farmacocinética , Lipossomos/metabolismo , Lipossomos/farmacocinética , Biotina/química , Biotina/metabolismo , Linhagem Celular Tumoral , Dissulfetos/química , Dissulfetos/metabolismo , Sistemas de Liberação de Medicamentos , Feminino , Fluoresceínas/metabolismo , Humanos , Cinética , Lipídeos/química , Lipossomos/química , Macrófagos/efeitos dos fármacos , Macrófagos/metabolismo , Microscopia de Fluorescência , Estrutura Molecular , Oxirredução , Tamanho da Partícula , Propriedades de Superfície , Distribuição Tecidual
10.
JCI Insight ; 6(3)2021 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-33400687

RESUMO

Antiretroviral therapies (ARTs) abrogate HIV replication; however, infection persists as long-lived reservoirs of infected cells with integrated proviruses, which reseed replication if ART is interrupted. A central tenet of our current understanding of this persistence is that infected cells are shielded from immune recognition and elimination through a lack of antigen expression from proviruses. Efforts to cure HIV infection have therefore focused on reactivating latent proviruses to enable immune-mediated clearance, but these have yet to succeed in reducing viral reservoirs. Here, we revisited the question of whether HIV reservoirs are predominately immunologically silent from a new angle: by querying the dynamics of HIV-specific T cell responses over long-term ART for evidence of ongoing recognition of HIV-infected cells. In longitudinal assessments, we show that the rates of change in persisting HIV Nef-specific responses, but not responses to other HIV gene products, were associated with residual frequencies of infected cells. These Nef-specific responses were highly stable over time and disproportionately exhibited a cytotoxic, effector functional profile, indicative of recent in vivo recognition of HIV antigens. These results indicate substantial visibility of the HIV-infected cells to T cells on stable ART, presenting both opportunities and challenges for the development of therapeutic approaches to curing infection.


Assuntos
Fármacos Anti-HIV/uso terapêutico , Antígenos HIV/imunologia , Infecções por HIV/tratamento farmacológico , Infecções por HIV/imunologia , HIV-1/imunologia , Linfócitos T/imunologia , Linfócitos T/virologia , Adulto , Idoso , Linfócitos T CD4-Positivos/efeitos dos fármacos , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/virologia , Linfócitos T CD8-Positivos/efeitos dos fármacos , Linfócitos T CD8-Positivos/imunologia , Linfócitos T CD8-Positivos/virologia , Estudos de Coortes , Feminino , Granzimas/metabolismo , Infecções por HIV/virologia , Interações entre Hospedeiro e Microrganismos/efeitos dos fármacos , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Evasão da Resposta Imune , Interferon gama/metabolismo , Estudos Longitudinais , Masculino , Pessoa de Meia-Idade , Linfócitos T/efeitos dos fármacos , Carga Viral , Adulto Jovem
11.
Viruses ; 12(2)2020 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-32046251

RESUMO

Human immunodeficiency virus (HIV-1) indefinitely persists, despite effective antiretroviral therapy (ART), within a small pool of latently infected cells. These cells often display markers of immunologic memory and harbor both replication-competent and -incompetent proviruses at approximately a 1:100 ratio. Although complete HIV eradication is a highly desirable goal, this likely represents a bridge too far for our current and foreseeable technologies. A more tractable goal involves engineering a sustained viral remission in the absence of ART--a "functional cure." In this setting, HIV remains detectable during remission, but the size of the reservoir is small and the residual virus is effectively controlled by an engineered immune response or other intervention. Biological precedence for such an approach is found in the post-treatment controllers (PTCs), a rare group of HIV-infected individuals who, following ART withdrawal, do not experience viral rebound. PTCs are characterized by a small reservoir, greatly reduced inflammation, and the presence of a poorly understood immune response that limits viral rebound. Our goal is to devise a safe and effective means for replicating durable post-treatment control on a global scale. This requires devising methods to reduce the size of the reservoir and to control replication of this residual virus. In the following sections, we will review many of the approaches and tools that likely will be important for implementing such a "reduce and control" strategy and for achieving a PTC-like sustained HIV remission in the absence of ART.


Assuntos
Reservatórios de Doenças/virologia , Infecções por HIV/prevenção & controle , Infecções por HIV/terapia , Indução de Remissão , Latência Viral , Animais , Antirretrovirais/uso terapêutico , Infecções por HIV/virologia , HIV-1/fisiologia , Humanos , Memória Imunológica , Infecção Latente , Macaca mulatta , Síndrome de Imunodeficiência Adquirida dos Símios/virologia , Vírus da Imunodeficiência Símia , Carga Viral , Ativação Viral , Replicação Viral
12.
Elife ; 72018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29714165

RESUMO

Human immunodeficiency virus (HIV) infection is currently incurable, due to the persistence of latently infected cells. The 'shock and kill' approach to a cure proposes to eliminate this reservoir via transcriptional activation of latent proviruses, enabling direct or indirect killing of infected cells. Currently available latency-reversing agents (LRAs) have however proven ineffective. To understand why, we used a novel HIV reporter strain in primary CD4+ T cells and determined which latently infected cells are reactivatable by current candidate LRAs. Remarkably, none of these agents reactivated more than 5% of cells carrying a latent provirus. Sequencing analysis of reactivatable vs. non-reactivatable populations revealed that the integration sites were distinguishable in terms of chromatin functional states. Our findings challenge the feasibility of 'shock and kill', and suggest the need to explore other strategies to control the latent HIV reservoir.


Assuntos
Linfócitos T CD4-Positivos/virologia , Cromatina , Infecções por HIV/virologia , HIV-1/fisiologia , Latência Viral , Linfócitos T CD4-Positivos/imunologia , Linfócitos T CD4-Positivos/patologia , Células Cultivadas , Infecções por HIV/imunologia , Infecções por HIV/patologia , Humanos , Vírion , Ativação Viral , Integração Viral
13.
Cell Host Microbe ; 21(5): 569-579.e6, 2017 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-28494238

RESUMO

Transcriptional latency of HIV is a last barrier to viral eradication. Chromatin-remodeling complexes and post-translational histone modifications likely play key roles in HIV-1 reactivation, but the underlying mechanisms are incompletely understood. We performed an RNAi-based screen of human lysine methyltransferases and identified the SET and MYND domain-containing protein 2 (SMYD2) as an enzyme that regulates HIV-1 latency. Knockdown of SMYD2 or its pharmacological inhibition reactivated latent HIV-1 in T cell lines and in primary CD4+ T cells. SMYD2 associated with latent HIV-1 promoter chromatin, which was enriched in monomethylated lysine 20 at histone H4 (H4K20me1), a mark lost in cells lacking SMYD2. Further, we find that lethal 3 malignant brain tumor 1 (L3MBTL1), a reader protein with chromatin-compacting properties that recognizes H4K20me1, was recruited to the latent HIV-1 promoter in a SMYD2-dependent manner. We propose that a SMYD2-H4K20me1-L3MBTL1 axis contributes to HIV-1 latency and can be targeted with small-molecule SMYD2 inhibitors.


Assuntos
HIV-1/fisiologia , Histona-Lisina N-Metiltransferase/metabolismo , Histonas/metabolismo , Latência Viral/fisiologia , Linfócitos T CD4-Positivos , Linhagem Celular , Cromatina/química , Cromatina/genética , Proteínas Cromossômicas não Histona/metabolismo , DNA Recombinante , Feminino , Células HEK293 , HIV-1/genética , Histona-Lisina N-Metiltransferase/genética , Histonas/química , Humanos , Lisina/metabolismo , Metilação , Regiões Promotoras Genéticas , RNA Interferente Pequeno , Proteínas Repressoras , Linfócitos T/virologia , Proteínas Supressoras de Tumor
14.
Cell Host Microbe ; 20(6): 785-797, 2016 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-27978436

RESUMO

A population of CD4 T lymphocytes harboring latent HIV genomes can persist in patients on antiretroviral therapy, posing a barrier to HIV eradication. To examine cellular complexes controlling HIV latency, we conducted a genome-wide screen with a pooled ultracomplex shRNA library and in vitro system modeling HIV latency and identified the mTOR complex as a modulator of HIV latency. Knockdown of mTOR complex subunits or pharmacological inhibition of mTOR activity suppresses reversal of latency in various HIV-1 latency models and HIV-infected patient cells. mTOR inhibitors suppress HIV transcription both through the viral transactivator Tat and via Tat-independent mechanisms. This inhibition occurs at least in part via blocking the phosphorylation of CDK9, a p-TEFb complex member that serves as a cofactor for Tat-mediated transcription. The control of HIV latency by mTOR signaling identifies a pathway that may have significant therapeutic opportunities.


Assuntos
Infecções por HIV/virologia , HIV-1/efeitos dos fármacos , HIV-1/genética , Serina-Treonina Quinases TOR/farmacologia , Latência Viral/efeitos dos fármacos , Proteínas Adaptadoras de Transdução de Sinal/genética , Linfócitos T CD4-Positivos/metabolismo , Linfócitos T CD4-Positivos/virologia , Linhagem Celular , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Quinase 9 Dependente de Ciclina/metabolismo , Regulação Viral da Expressão Gênica , Técnicas de Silenciamento de Genes , Genes Virais , HIV-1/fisiologia , Humanos , Células K562 , Fosforilação , Fator B de Elongação Transcricional Positiva/metabolismo , RNA Interferente Pequeno/genética , Transdução de Sinais , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Transcrição Gênica/efeitos dos fármacos , Homólogo LST8 da Proteína Associada a mTOR , Produtos do Gene tat do Vírus da Imunodeficiência Humana
15.
mBio ; 6(5): e01552-15, 2015 Oct 20.
Artigo em Inglês | MEDLINE | ID: mdl-26489864

RESUMO

UNLABELLED: Intracellular signaling connected to integrin activation is known to induce cytoplasmic Ca(2+) release, which in turn mediates a number of downstream signals. The cellular entry pathways of two closely related alphaherpesviruses, equine herpesviruses 1 and 4 (EHV-1 and EHV-4), are differentially regulated with respect to the requirement of interaction of glycoprotein H (gH) with α4ß1-integrins. We show here that binding of EHV-1, but not EHV-4, to target cells resulted in a rapid and significant increase in cytosolic Ca(2+) levels. EHV-1 expressing EHV-4 gH (gH4) in lieu of authentic gH1 failed to induce Ca(2+) release, while EHV-4 with gH1 triggered significant Ca(2+) release. Blocking the interaction between gH1 and α4ß1-integrins, inhibiting phospholipase C (PLC) activation, or blocking binding of inositol 1,4,5-triphosphate (IP3) to its receptor on the endoplasmic reticulum (ER) abrogated Ca(2+) release. Interestingly, phosphatidylserine (PS) was exposed on the plasma membrane in response to cytosolic calcium increase after EHV-1 binding through a scramblase-dependent mechanism. Inhibition of both Ca(2+) release from the ER and scramblase activation blocked PS scrambling and redirected virus entry to the endocytic pathway, indicating that PS may play a role in facilitating virus entry directly at the plasma membrane. IMPORTANCE: Herpesviruses are a large family of enveloped viruses that infect a wide range of hosts, causing a variety of diseases. These viruses have developed a number of strategies for successful entry into different cell types. We and others have shown that alphaherpesviruses, including EHV-1 and herpes simplex virus 1 (HSV-1), can route their entry pathway and do so by manipulation of cell signaling cascades to ensure viral genome delivery to nuclei. We show here that the interaction between EHV-1 gH and cellular α4ß1-integrins is necessary to induce emptying of ER calcium stores, which induces phosphatidylserine exposure on the plasma membrane through a scramblase-dependent mechanism. This change in lipid asymmetry facilitates virus entry and might help fusion of the viral envelope at the plasma membrane. These findings will help to advance our understanding of herpesvirus entry mechanism and may facilitate the development of novel drugs that can be implemented for prevention of infection and disease.


Assuntos
Sinalização do Cálcio , Membrana Celular/química , Herpesvirus Equídeo 1/fisiologia , Herpesvirus Equídeo 4/fisiologia , Integrina alfa4beta1/metabolismo , Fosfatidilserinas/análise , Proteínas Estruturais Virais/metabolismo , Animais , Células Cultivadas , Cavalos , Ligação Proteica , Internalização do Vírus
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA