Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 120(2): e2216814120, 2023 01 10.
Artigo em Inglês | MEDLINE | ID: mdl-36603028

RESUMO

Spinal muscular atrophy (SMA) is a severe autosomal recessive neuromuscular disease affecting children and young adults, caused by mutations of the survival motor neuron 1 gene (SMN1). SMA is characterized by the degeneration of spinal alpha motor neurons (αMNs), associated with muscle paralysis and atrophy, as well as other peripheral alterations. Both growth hormone-releasing hormone (GHRH) and its potent agonistic analog, MR-409, exert protective effects on muscle atrophy, cardiomyopathies, ischemic stroke, and inflammation. In this study, we aimed to assess the protective role of MR-409 in SMNΔ7 mice, a widely used model of SMA. Daily subcutaneous treatment with MR-409 (1 or 2 mg/kg), from postnatal day 2 (P2) to euthanization (P12), increased body weight and improved motor behavior in SMA mice, particularly at the highest dose tested. In addition, MR-409 reduced atrophy and ameliorated trophism in quadriceps and gastrocnemius muscles, as determined by an increase in fiber size, as well as upregulation of myogenic genes and inhibition of proteolytic pathways. MR-409 also promoted the maturation of neuromuscular junctions, by reducing multi-innervated endplates and increasing those mono-innervated. Finally, treatment with MR-409 delayed αMN death and blunted neuroinflammation in the spinal cord of SMA mice. In conclusion, the present study demonstrates that MR-409 has protective effects in SMNΔ7 mice, suggesting that GHRH agonists are promising agents for the treatment of SMA, possibly in combination with SMN-dependent strategies.


Assuntos
Hormônio Liberador de Hormônio do Crescimento , Atrofia Muscular Espinal , Animais , Camundongos , Atrofia/metabolismo , Modelos Animais de Doenças , Hormônio Liberador de Hormônio do Crescimento/agonistas , Neurônios Motores/metabolismo , Atrofia Muscular Espinal/tratamento farmacológico , Atrofia Muscular Espinal/genética , Atrofia Muscular Espinal/metabolismo , Medula Espinal/metabolismo , Proteína 1 de Sobrevivência do Neurônio Motor/genética , Proteína 1 de Sobrevivência do Neurônio Motor/metabolismo
2.
Mol Psychiatry ; 26(12): 7465-7474, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34331008

RESUMO

Anxiety and depression have been suggested to increase the risk for post-traumatic stress disorders (PTSD). A link between all these mental illnesses, inflammation and oxidative stress is also well established. Recent behavior studies by our group clearly demonstrate a powerful anxiolytic and antidepressant-like effects of a novel growth hormone releasing hormone (GHRH) antagonist of MIAMI class, MIA-690, probably related to modulatory effects on the inflammatory and oxidative status. In the present work we investigated the potential beneficial effects of MIA-602, another recently developed GHRH antagonist, in mood disorders, as anxiety and depression, and the possible brain pathways involved in its protective activity, in adult mice. MIA-602 exhibited antinflammatory and antioxidant effects in ex vivo and in vivo experimental models, inducing anxiolytic and antidepressant-like behavior in mice subcutaneously treated for 4 weeks. The beneficial effect of MIA-602 on inflammatory and oxidative status and synaptogenesis resulting in anxiolytic and antidepressant-like effects could be related by increases of nuclear factor erythroid 2-related factor 2 (Nrf2) and of brain-derived neurotrophic factor (BDNF) signaling pathways in the hippocampus and prefrontal cortex. These results strongly suggest that GHRH analogs should be tried clinically for the treatment of mood disorders including PTSD.


Assuntos
Transtornos de Estresse Pós-Traumáticos , Animais , Fator Neurotrófico Derivado do Encéfalo , Camundongos , Transtornos do Humor/tratamento farmacológico , Receptores de Neuropeptídeos , Receptores de Hormônios Reguladores de Hormônio Hipofisário , Sermorelina/análogos & derivados , Sermorelina/farmacologia , Transtornos de Estresse Pós-Traumáticos/tratamento farmacológico
3.
Proc Natl Acad Sci U S A ; 116(6): 2226-2231, 2019 02 05.
Artigo em Inglês | MEDLINE | ID: mdl-30659154

RESUMO

Malignant pleural mesothelioma (MPM) is an aggressive malignancy associated with exposure to asbestos, with poor prognosis and no effective therapies. The strong inhibitory activities of growth hormone-releasing hormone (GHRH) antagonists have been demonstrated in different experimental human cancers, including lung cancer; however, their role in MPM remains unknown. We assessed the effects of the GHRH antagonists MIA-602 and MIA-690 in vitro in MPM cell lines and in primary MPM cells, and in vivo in MPM xenografts. GHRH, GHRH receptor, and its main splice variant SV1 were found in all the MPM cell types examined. In vitro, MIA-602 and MIA-690 reduced survival and proliferation in both MPM cell lines and primary cells and showed synergistic inhibitory activity with the chemotherapy drug pemetrexed. In MPM cells, GHRH antagonists also regulated activity and expression of apoptotic molecules, inhibited cell migration, and reduced the expression of matrix metalloproteinases. These effects were accompanied by impairment of mitochondrial activity and increased production of reactive oxygen species. In vivo, s.c. administration of MIA-602 and MIA-690 at the dose of 5 µg/d for 4 wk strongly inhibited the growth of MPM xenografts in mice, along with reduction of tumor insulin-like growth factor-I and vascular endothelial growth factor. Overall, these results suggest that treatment with GHRH antagonists, alone or in association with chemotherapy, may offer an approach for the treatment of MPM.


Assuntos
Antineoplásicos/farmacologia , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelioma/metabolismo , Mesotelioma/patologia , Neoplasias Pleurais/metabolismo , Neoplasias Pleurais/patologia , Animais , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Modelos Animais de Doenças , Expressão Gênica , Hormônio Liberador de Hormônio do Crescimento/genética , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Mesotelioma/tratamento farmacológico , Mesotelioma Maligno , Camundongos , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Neoplasias Pleurais/tratamento farmacológico , Receptores de Neuropeptídeos/genética , Receptores de Neuropeptídeos/metabolismo , Receptores de Hormônios Reguladores de Hormônio Hipofisário/genética , Receptores de Hormônios Reguladores de Hormônio Hipofisário/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Int J Mol Sci ; 23(14)2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35887313

RESUMO

In our recent studies, we have developed a thermodynamic biochemical model able to select the resonant frequency of an extremely low frequency electromagnetic field (ELF-EMF) specifically affecting different types of cancer, and we have demonstrated its effects in vitro. In this work, we investigate the cellular response to the ELF electromagnetic wave in three-dimensional (3D) culture models, which mimic the features of tumors in vivo. Cell membrane was modelled as a resistor-capacitor circuit and the specific thermal resonant frequency was calculated and tested on two-dimensional (2D) and three-dimensional (3D) cell cultures of human pancreatic cancer, glioblastoma and breast cancer. Cell proliferation and the transcription of respiratory chain and adenosine triphosphate synthase subunits, as well as uncoupling proteins, were assessed. For the first time, we demonstrate that an ELF-EMF hampers growth and potentiates both the coupled and uncoupled respiration of all analyzed models. Interestingly, the metabolic shift was evident even in the 3D aggregates, making this approach particularly valuable and promising for future application in vivo, in aggressive cancer tissues characterized by resistance to treatments.


Assuntos
Campos Eletromagnéticos , Glioblastoma , Proliferação de Células , Radiação Eletromagnética , Humanos
5.
Int J Mol Sci ; 23(19)2022 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-36232554

RESUMO

Pleural mesothelioma (PM) is an aggressive cancer with poor prognosis and no effective therapies, mainly caused by exposure to asbestos. Antagonists of growth hormone-releasing hormone (GHRH) display strong antitumor effects in many experimental cancers, including lung cancer and mesothelioma. Here, we aimed to determine whether GHRH antagonist MIA-690 potentiates the antitumor effect of cisplatin and pemetrexed in PM. In vitro, MIA-690, in combination with cisplatin and pemetrexed, synergistically reduced cell viability, restrained cell proliferation and enhanced apoptosis, compared with drugs alone. In vivo, the same combination resulted in a strong growth inhibition of MSTO-211H xenografts, decreased tumor cell proliferation and increased apoptosis. Mechanistically, MIA-690, particularly with chemotherapeutic drugs, inhibited proliferative and oncogenic pathways, such as MAPK ERK1/2 and cMyc, and downregulated cyclin D1 and B1 mRNAs. Inflammatory pathways such as NF-kB and STAT3 were also reduced, as well as oxidative, angiogenic and tumorigenic markers (iNOS, COX-2, MMP2, MMP9 and HMGB1) and growth factors (VEGF and IGF-1). Overall, these findings strongly suggest that GHRH antagonists of MIA class, such as MIA-690, could increase the efficacy of standard therapy in PM.


Assuntos
Proteína HMGB1 , Mesotelioma Maligno , Mesotelioma , Neoplasias Pleurais , Linhagem Celular Tumoral , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Ciclina D1 , Ciclo-Oxigenase 2 , Hormônio Liberador de Hormônio do Crescimento , Humanos , Fator de Crescimento Insulin-Like I/uso terapêutico , Metaloproteinase 2 da Matriz , Metaloproteinase 9 da Matriz/genética , Mesotelioma/tratamento farmacológico , Mesotelioma/patologia , NF-kappa B/metabolismo , Pemetrexede/farmacologia , Pemetrexede/uso terapêutico , Neoplasias Pleurais/tratamento farmacológico , Neoplasias Pleurais/patologia , Fator A de Crescimento do Endotélio Vascular/metabolismo
6.
Neuroendocrinology ; 110(11-12): 1028-1041, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-31940630

RESUMO

INTRODUCTION: Pituitary neuroendocrine tumors (PitNETs), the most abundant of all intracranial tumors, entail severe comorbidities. First-line therapy is transsphenoidal surgery, but subsequent pharmacological therapy is often required. Unfortunately, many patients are/become unresponsive to available drugs (somatostatin analogues [SSAs]/dopamine agonists), underscoring the need for new therapies. Statins are well-known drugs commonly prescribed to treat hyperlipidemia/cardiovascular diseases, but can convey additional beneficial effects, including antitumor actions. The direct effects of statins on normal human pituitary or PitNETs are poorly known. Thus, we aimed to explore the direct effects of statins, especially simvastatin, on key functional parameters in normal and tumoral pituitary cells, and to evaluate the combined effects of simvastatin with metformin (MF) or SSAs. METHODS: Effects of statins in cell proliferation/viability, hormone secretion, and signaling pathways were evaluated in normal pituitary cells from a primate model (Papio anubis), tumor cells from corticotropinomas, somatotropinomas, nonfunctioning pituitary tumors, and PitNET cell-lines (AtT20/GH3-cells). RESULTS: All statins decreased AtT20-cell proliferation, simvastatin showing stronger effects. Indeed, simvastatin reduced cell viability and/or hormone secretion in all PitNETs subtypes and cell-lines, and ACTH/GH/PRL/FSH/LH secretion (but not expression), in primate cell cultures, by modulating MAPK/PI3K/mTOR pathways and expression of key receptors (GH-releasing hormone-receptor/ghrelin-R/Kiss1-R) regulating pituitary function. Addition of MF or SSAs did not enhance simvastatin antitumor effects. CONCLUSION: Our data reveal direct antitumor effects of simvastatin on PitNET-cells, paving the way to explore these compounds as a possible tool to treat PitNETs.


Assuntos
Antineoplásicos/farmacologia , Proliferação de Células/efeitos dos fármacos , Inibidores de Hidroximetilglutaril-CoA Redutases/farmacologia , Tumores Neuroendócrinos/tratamento farmacológico , Hipófise/efeitos dos fármacos , Neoplasias Hipofisárias/tratamento farmacológico , Sinvastatina/farmacologia , Adulto , Idoso , Animais , Linhagem Celular Tumoral , Modelos Animais de Doenças , Quimioterapia Combinada , Feminino , Humanos , Hipoglicemiantes/farmacologia , Masculino , Metformina/farmacologia , Camundongos , Pessoa de Meia-Idade , Papio anubis , Ratos , Somatostatina/farmacologia , Adulto Jovem
7.
Proc Natl Acad Sci U S A ; 114(45): 12033-12038, 2017 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-29078377

RESUMO

It has been shown that growth hormone-releasing hormone (GHRH) reduces cardiomyocyte (CM) apoptosis, prevents ischemia/reperfusion injury, and improves cardiac function in ischemic rat hearts. However, it is still not known whether GHRH would be beneficial for life-threatening pathological conditions, like cardiac hypertrophy and heart failure (HF). Thus, we tested the myocardial therapeutic potential of GHRH stimulation in vitro and in vivo, using GHRH or its agonistic analog MR-409. We show that in vitro, GHRH(1-44)NH2 attenuates phenylephrine-induced hypertrophy in H9c2 cardiac cells, adult rat ventricular myocytes, and human induced pluripotent stem cell-derived CMs, decreasing expression of hypertrophic genes and regulating hypertrophic pathways. Underlying mechanisms included blockade of Gq signaling and its downstream components phospholipase Cß, protein kinase Cε, calcineurin, and phospholamban. The receptor-dependent effects of GHRH also involved activation of Gαs and cAMP/PKA, and inhibition of increase in exchange protein directly activated by cAMP1 (Epac1). In vivo, MR-409 mitigated cardiac hypertrophy in mice subjected to transverse aortic constriction and improved cardiac function. Moreover, CMs isolated from transverse aortic constriction mice treated with MR-409 showed improved contractility and reversal of sarcolemmal structure. Overall, these results identify GHRH as an antihypertrophic regulator, underlying its therapeutic potential for HF, and suggest possible beneficial use of its analogs for treatment of pathological cardiac hypertrophy.


Assuntos
Cardiomegalia/metabolismo , Hormônio Liberador de Hormônio do Crescimento/metabolismo , Insuficiência Cardíaca/metabolismo , Coração/fisiologia , Animais , Apoptose/efeitos dos fármacos , Calcineurina/metabolismo , Cardiomegalia/induzido quimicamente , Linhagem Celular , Proteínas Quinases Dependentes de AMP Cíclico/metabolismo , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/metabolismo , Fenilefrina/farmacologia , Fosfolipase C beta/metabolismo , Proteína Quinase C/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
8.
J Cell Mol Med ; 21(12): 3670-3678, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28744974

RESUMO

Patients with ischaemic heart disease or chronic heart failure show altered levels of obestatin, suggesting a role for this peptide in human heart function. We have previously demonstrated that GH secretagogues and the ghrelin gene-derived peptides, including obestatin, exert cardiovascular effects by modulating cardiac inotropism and vascular tone, and reducing cell death and contractile dysfunction in hearts subjected to ischaemia/reperfusion (I/R), through the Akt/nitric oxide (NO) pathway. However, the mechanisms underlying the cardiac actions of obestatin remain largely unknown. Thus, we suggested that obestatin-induced activation of PI3K/Akt/NO and PKG signalling is implicated in protection of the myocardium when challenged by adrenergic, endothelinergic or I/R stress. We show that obestatin exerts an inhibitory tone on the performance of rat papillary muscle in both basal conditions and under ß-adrenergic overstimulation, through endothelial-dependent NO/cGMP/PKG signalling. This pathway was also involved in the vasodilator effect of the peptide, used both alone and under stress induced by endothelin-1. Moreover, when infused during early reperfusion, obestatin reduced infarct size in isolated I/R rat hearts, through an NO/PKG pathway, comprising ROS/PKC signalling, and converging on mitochondrial ATP-sensitive potassium [mitoK(ATP)] channels. Overall, our results suggest that obestatin regulates cardiovascular function in stress conditions and induces cardioprotection by mechanisms dependent on activation of an NO/soluble guanylate cyclase (sGC)/PKG pathway. In fact, obestatin counteracts exaggerated ß-adrenergic and endothelin-1 activity, relevant factors in heart failure, suggesting multiple positive effects of the peptide, including the lowering of cardiac afterload, thus representing a potential candidate in pharmacological post-conditioning.


Assuntos
Cardiotônicos/farmacologia , Infarto do Miocárdio/prevenção & controle , Isquemia Miocárdica/prevenção & controle , Traumatismo por Reperfusão Miocárdica/prevenção & controle , Óxido Nítrico/metabolismo , Hormônios Peptídicos/farmacologia , Animais , Cardiotônicos/química , Cardiotônicos/metabolismo , Proteínas Quinases Dependentes de GMP Cíclico/genética , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Endotelina-1/antagonistas & inibidores , Endotelina-1/farmacologia , Regulação da Expressão Gênica , Ventrículos do Coração/efeitos dos fármacos , Ventrículos do Coração/metabolismo , Ventrículos do Coração/patologia , Masculino , Contração Miocárdica/efeitos dos fármacos , Infarto do Miocárdio/genética , Infarto do Miocárdio/metabolismo , Infarto do Miocárdio/patologia , Isquemia Miocárdica/genética , Isquemia Miocárdica/metabolismo , Isquemia Miocárdica/patologia , Traumatismo por Reperfusão Miocárdica/genética , Traumatismo por Reperfusão Miocárdica/metabolismo , Traumatismo por Reperfusão Miocárdica/patologia , Técnicas de Cultura de Órgãos , Músculos Papilares/efeitos dos fármacos , Músculos Papilares/metabolismo , Músculos Papilares/patologia , Hormônios Peptídicos/genética , Hormônios Peptídicos/metabolismo , Fosfatidilinositol 3-Quinases/genética , Fosfatidilinositol 3-Quinases/metabolismo , Canais de Potássio/genética , Canais de Potássio/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Wistar , Transdução de Sinais , Guanilil Ciclase Solúvel/genética , Guanilil Ciclase Solúvel/metabolismo
9.
Biochim Biophys Acta ; 1851(5): 657-66, 2015 May.
Artigo em Inglês | MEDLINE | ID: mdl-25677823

RESUMO

QRFP (RFamide) peptides are neuropeptides involved in food intake and adiposity regulation in rodents. We have previously shown that QRFP-43 (43RFa) and QRFP-26 (26RFa) inhibited isoproterenol (ISO)-induced lipolysis in adipocytes. However, the antilipolytic signaling pathways activated by QRFP peptides have not been investigated. In the present study, 3T3-L1 adipocytes were used to identify the main pathways involved in QRFP-43 decreasing ISO-induced lipolysis. Our results show that QRFP-43 reduced ISO-induced phosphorylation of perilipin A (PLIN) and hormone-sensitive lipase (HSL) on Ser660 by 43 and 25%, respectively, but increased Akt phosphorylation by 44%. However, the inhibition of phosphodiesterase 3B (PDE3B), a regulator of lipolysis activated by Akt, did not reverse the antilipolytic effect of QRFP-43. PDE3B inhibition reversed the decrease of Ser660 HSL phosphorylation associated with QRFP-43 antilipolytic effect. QRFP-43 also prevented PKC activation and ISO-induced Src kinases activation leading to the inhibition of the caveolin-1 (CAV-1) translocation on lipid droplets. Indeed, QRFP-43 attenuated phorbol 12-myristate 13-acetate-induced lipolysis and ISO-induced extracellular signal-regulated and Src kinases by 28, 37 and 48%, respectively. The attenuation of ISO-induced lipolysis by QRFP-43 was associated with a decrease of phosphorylated Ser660 HSL, PKA-catalytic (PKA-c) subunit and CAV-1 translocation on lipid droplets by 37, 50 and 46%, respectively. The decrease in ISO-induced CAV-1 and PKA-c translocation was associated with a reduction of PLIN phosphorylation by 44% in QRFP-43-treated adipocytes. These results suggest that QRFP-43 attenuated ISO-induced lipolysis by preventing the formation of an active complex on lipid droplets and the activation of Src kinases and PKC.


Assuntos
Adipócitos/efeitos dos fármacos , Proteínas de Transporte/metabolismo , Caveolina 1/metabolismo , Subunidades Catalíticas da Proteína Quinase Dependente de AMP Cíclico/metabolismo , Lipólise/efeitos dos fármacos , Peptídeos/farmacologia , Fosfoproteínas/metabolismo , Esterol Esterase/metabolismo , Células 3T3-L1 , Adipócitos/enzimologia , Animais , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Relação Dose-Resposta a Droga , Ativação Enzimática , Peptídeos e Proteínas de Sinalização Intercelular , Isoproterenol/farmacologia , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Camundongos , Complexos Multiproteicos , Perilipina-1 , Inibidores da Fosfodiesterase 3/farmacologia , Fosforilação , Proteína Quinase C/metabolismo , Transporte Proteico , Receptores Acoplados a Proteínas G/metabolismo , Serina , Transdução de Sinais/efeitos dos fármacos , Acetato de Tetradecanoilforbol/farmacologia , Quinases da Família src/metabolismo
10.
IUBMB Life ; 65(12): 976-82, 2013 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-24217898

RESUMO

Obestatin is a 23 amino acid amidated peptide, member of the preproghrelin gene-derived peptides. Initially, obestatin was reported to exert opposite effects to those of ghrelin on food intake and body weight gain, through interaction with GPR39; however, these findings are still strongly debated and obestatin biological role remains largely unknown. Interestingly, binding of obestatin to the glucagon-like peptide 1 receptor has been recently suggested. Despite being a controversial peptide, recent findings have clearly indicated that obestatin is indeed a multifunctional peptide, exerting a variety of effects, such as stimulation of cell proliferation, survival and differentiation, influence on glucose and lipid metabolism, as well as anti-inflammatory and cardioprotective actions. Its positive effects on glucose and lipid metabolism candidate this peptide as a potential therapeutic tool in pathological conditions such as insulin resistance and diabetes.


Assuntos
Tecido Adiposo Branco/metabolismo , Grelina/fisiologia , Pâncreas/metabolismo , Animais , Apoptose , Peptídeo 1 Semelhante ao Glucagon/fisiologia , Humanos , Insulina/fisiologia , Metabolismo dos Lipídeos , Transdução de Sinais
11.
FASEB J ; 26(8): 3393-411, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22601779

RESUMO

The metabolic actions of the ghrelin gene-derived peptide obestatin are still unclear. We investigated obestatin effects in vitro, on adipocyte function, and in vivo, on insulin resistance and inflammation in mice fed a high-fat diet (HFD). Obestatin effects on apoptosis, differentiation, lipolysis, and glucose uptake were determined in vitro in mouse 3T3-L1 and in human subcutaneous (hSC) and omental (hOM) adipocytes. In vivo, the influence of obestatin on glucose metabolism was assessed in mice fed an HFD for 8 wk. 3T3-L1, hSC, and hOM preadipocytes and adipocytes secreted obestatin and showed specific binding for the hormone. Obestatin prevented apoptosis in 3T3-L1 preadipocytes by increasing phosphoinositide 3-kinase (PI3K)/Akt and extracellular signal-regulated kinase (ERK)1/2 signaling. In both mice and human adipocytes, obestatin inhibited isoproterenol-induced lipolysis, promoted AMP-activated protein kinase phosphorylation, induced adiponectin, and reduced leptin secretion. Obestatin also enhanced glucose uptake in either the absence or presence of insulin, promoted GLUT4 translocation, and increased Akt phosphorylation and sirtuin 1 (SIRT1) protein expression. Inhibition of SIRT1 by small interfering RNA reduced obestatin-induced glucose uptake. In HFD-fed mice, obestatin reduced insulin resistance, increased insulin secretion from pancreatic islets, and reduced adipocyte apoptosis and inflammation in metabolic tissues. These results provide evidence of a novel role for obestatin in adipocyte function and glucose metabolism and suggest potential therapeutic perspectives in insulin resistance and metabolic dysfunctions.


Assuntos
Adipócitos/metabolismo , Grelina/fisiologia , Resistência à Insulina , Células 3T3-L1 , Adipócitos/efeitos dos fármacos , Adiponectina , Animais , Apoptose/efeitos dos fármacos , Dieta Hiperlipídica , MAP Quinases Reguladas por Sinal Extracelular/fisiologia , Glucose/metabolismo , Transportador de Glucose Tipo 4/metabolismo , Humanos , Inflamação , Ilhotas Pancreáticas/metabolismo , Leptina , Lipólise/efeitos dos fármacos , Camundongos , Fosfatidilinositol 3-Quinases/fisiologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais
12.
Front Immunol ; 14: 1231363, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37649486

RESUMO

COVID-19 is characterized by an excessive inflammatory response and macrophage hyperactivation, leading, in severe cases, to alveolar epithelial injury and acute respiratory distress syndrome. Recent studies have reported that SARS-CoV-2 spike (S) protein interacts with bacterial lipopolysaccharide (LPS) to boost inflammatory responses in vitro, in macrophages and peripheral blood mononuclear cells (PBMCs), and in vivo. The hypothalamic hormone growth hormone-releasing hormone (GHRH), in addition to promoting pituitary GH release, exerts many peripheral functions, acting as a growth factor in both malignant and non-malignant cells. GHRH antagonists, in turn, display potent antitumor effects and antinflammatory activities in different cell types, including lung and endothelial cells. However, to date, the antinflammatory role of GHRH antagonists in COVID-19 remains unexplored. Here, we examined the ability of GHRH antagonist MIA-602 to reduce inflammation in human THP-1-derived macrophages and PBMCs stimulated with S protein and LPS combination. Western blot and immunofluorescence analysis revealed the presence of GHRH receptor and its splice variant SV1 in both THP-1 cells and PBMCs. Exposure of THP-1 cells to S protein and LPS combination increased the mRNA levels and protein secretion of TNF-α and IL-1ß, as well as IL-8 and MCP-1 gene expression, an effect hampered by MIA-602. Similarly, MIA-602 hindered TNF-α and IL-1ß secretion in PBMCs and reduced MCP-1 mRNA levels. Mechanistically, MIA-602 blunted the S protein and LPS-induced activation of inflammatory pathways in THP-1 cells, such as NF-κB, STAT3, MAPK ERK1/2 and JNK. MIA-602 also attenuated oxidative stress in PBMCs, by decreasing ROS production, iNOS and COX-2 protein levels, and MMP9 activity. Finally, MIA-602 prevented the effect of S protein and LPS synergism on NF-кB nuclear translocation and activity. Overall, these findings demonstrate a novel antinflammatory role for GHRH antagonists of MIA class and suggest their potential development for the treatment of inflammatory diseases, such as COVID-19 and related comorbidities.


Assuntos
COVID-19 , Glicoproteína da Espícula de Coronavírus , Humanos , Células Endoteliais , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Inflamação/tratamento farmacológico , Leucócitos Mononucleares , Lipopolissacarídeos , SARS-CoV-2 , Fator de Necrose Tumoral alfa
13.
Biochim Biophys Acta ; 1811(6): 386-96, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21435395

RESUMO

The acylated peptide ghrelin (AG) and its endogenous non-acylated isoform (UAG) protect cardiomyocytes, pancreatic ß-cells, and preadipocytes from apoptosis, and induce preadipocytes differentiation into adipocytes. These events are mediated by AG and UAG binding to a still unidentified receptor, which determines the activation of phosphoinositide 3-kinase (PI3K), protein kinase B (AKT), and mitogen-activated protein kinase (MAPK) ERK1/2. AG and UAG also possess antilipolytic activity in vitro, but the underlying mechanism remains unknown. Thus, the objective of the current study was to characterize the molecular events involved in AG/UAG receptor signaling cascade. We treated rat primary visceral adipocytes with isoproterenol (ISO) and forskolin (FSK) to stimulate lipolysis, simultaneously incubating them with or without AG or UAG. Both peptides blocked ISO- and FSK-induced lipolysis. By direct measurement of cAMP intracellular content, we demonstrated that AG/UAG effect was associated to a reduction of ISO-induced cAMP accumulation. Moreover, the cAMP analog 8Br-cAMP abolished AG/UAG effect. As AG and UAG were ineffective against lipolysis induced by db-cAMP, another poorly hydrolyzable cAMP analog, phosphodiesterase (PDE) involvement was hypothesized. Indeed, cilostamide, a specific PDE3B inhibitor, blocked AG/UAG effect on ISO-induced lipolysis. Furthermore, the PI3K inhibitor wortmannin and AKT inhibitor 1,3-dihydro-1-(1-((4-(6-phenyl-1H-imidazo(4,5-g)quinoxalin-7-yl)phenyl)methyl)-4piperidinyl)-2H-benzimidazol-2-one trifluoroacetate also blocked AG/UAG action, suggesting a role in PDE3B activation. In particular, PI3K isoenzyme gamma (PI3Kγ) selective inhibition through the compound AS605240 prevented AG/UAG effect on ISO-stimulated lipolysis, hampering AKT phosphorylation on Ser(473). Taken together, these data demonstrate for the first time that AG/UAG attenuation of ISO-induced lipolysis involves PI3Kγ/AKT and PDE3B.


Assuntos
Adipócitos/efeitos dos fármacos , Classe Ib de Fosfatidilinositol 3-Quinase/metabolismo , Nucleotídeo Cíclico Fosfodiesterase do Tipo 3/metabolismo , Grelina/farmacologia , Isoproterenol/farmacologia , Lipólise/efeitos dos fármacos , Acilação , Adipócitos/citologia , Adipócitos/metabolismo , Agonistas Adrenérgicos beta/metabolismo , Agonistas Adrenérgicos beta/farmacologia , Animais , Benzimidazóis/farmacologia , Western Blotting , Células Cultivadas , Colforsina/farmacologia , AMP Cíclico/metabolismo , Relação Dose-Resposta a Droga , Interações Medicamentosas , Grelina/metabolismo , Glicerol/metabolismo , Gordura Intra-Abdominal/citologia , Isoproterenol/metabolismo , Masculino , Inibidores de Fosfodiesterase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/metabolismo , Quinolonas/farmacologia , Quinoxalinas/farmacologia , Ratos , Ratos Wistar , Tiazolidinedionas/farmacologia
14.
Hum Reprod ; 27(7): 2117-29, 2012 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-22588000

RESUMO

BACKGROUND: Endometriosis is characterized by ectopic implantation of endometrial cells, which show increased proliferation and migration. Somatostatin (SST) and its analogues inhibit normal and cancer cell growth and motility through the SST receptors, sst1-5. Cortistatin (CST), which displays high structural and functional homology with SST, binds all ssts, as well as MrgX2. Our objective was to investigate the gene expression of the SST/CST system and to determine the effect of SST and its analogues on platelet-derived growth factor (PDGF)-induced proliferation and motility in telomerase-immortalized human endometrial stromal cell (T HESC) line and in primary endometrial stromal cell (ESCs) isolated from human endometriotic tissues. METHODS: Ectopic endometrial tissues were collected from women (n= 23) undergoing laparoscopic surgery for endometriosis (Stage III/IV). Gene expression was evaluated by real-time PCR, cell motility by wound healing assay, protein expression and ß-actin rearrangement by immunofluorescence, cell proliferation by the Alamar blue assay and ERK1/2 and Akt phosphorylation by western blot. RESULTS: Human endometriotic tissues, primary ESCs and T HESCs expressed SST, CST and ssts. SST, its analogues SOM230 and octreotide, as well as CST, counteracted PDGF-induced proliferation and migration in both ESCs and T HESCs. SST also inhibited vascular endothelial growth factor and metalloprotease-2 mRNA expression, and reduced basal and PDGF-induced ERK1/2 phosphorylation. CONCLUSION: These results indicate that the SST/CST system is expressed in endometriotic tissues and cells. The inhibitory effects of SST and its analogues on PDGF-induced proliferation and motility suggest that these peptides may represent promising tools in the treatment of endometriosis.


Assuntos
Regulação da Expressão Gênica , Fator de Crescimento Derivado de Plaquetas/metabolismo , Somatostatina/análogos & derivados , Somatostatina/fisiologia , Movimento Celular , Proliferação de Células , Endometriose/metabolismo , Endométrio/citologia , Endométrio/metabolismo , Feminino , Humanos , Modelos Biológicos , Proteínas do Tecido Nervoso/metabolismo , Neuropeptídeos/metabolismo , Fosforilação , Receptores Acoplados a Proteínas G/metabolismo , Receptores de Neuropeptídeos/metabolismo , Células-Tronco/citologia , Células Estromais/citologia , Cicatrização
15.
Biomed Pharmacother ; 146: 112554, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34923341

RESUMO

Colorectal cancer (CRC) is an aggressive tumor in which new treatment options deliver negative results on cure rates and long-term survival. The anticancer effects of growth hormone-releasing hormone (GHRH) antagonists have been reported in various experimental tumors, but their activity in CRC is unknown. In the present study, we demonstrated that chronic treatment with GHRH antagonist of MIAMI class, MIA-690, promoted survival and gradually blunted tumor progression in experimentally induced colitis-associated cancer in mice, paralleled by reduced inflammation in colon tissue. In particular, MIA-690 improved disease activity index score, and reduced loss of weight and mortality, by improving the survival rates, compared with vehicle-treated group. MIA-690 was also found to reduce various inflammatory and oxidative markers, such as serotonin, prostaglandin (PG)E2 and 8-iso-PGF2α levels, as well as COX-2, iNOS, TNF-α, IL-6 and NF-kB gene expression. Moreover, MIA-690 inhibited the protein expression of c-Myc, P-AKT and Bcl-2 and upregulated p53 protein expression. In conclusion, we showed that MIA-690 suppresses CRC progression and growth by reducing inflammatory and oxidative markers and modulating apoptotic and oncogenic pathways. Further investigations are required for translating these findings into the clinics.


Assuntos
Neoplasias Colorretais , Hormônio Liberador de Hormônio do Crescimento , Animais , Masculino , Camundongos , Apoptose/efeitos dos fármacos , Carcinogênese/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Neoplasias Colorretais/metabolismo , Regulação para Baixo , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Mediadores da Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Estresse Oxidativo/efeitos dos fármacos , Distribuição Aleatória , Regulação para Cima
16.
Peptides ; 142: 170582, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34051291

RESUMO

In addition to its metabolic and endocrine effects, growth hormone-releasing hormone (GHRH) was found to modulate feeding behavior in mammals. However, the role of recently synthetized GHRH antagonist MIA-690 and MR-409, a GHRH agonist, on feeding regulation remains to be evaluated. We investigated the effects of chronic subcutaneous administration of MIA-690 and MR-409 on feeding behavior and energy metabolism, in mice. Compared to vehicle, MIA-690 increased food intake and body weight, while MR-409 had no effect. Both analogs did not modify locomotor activity, as well as subcutaneous, visceral and brown adipose tissue (BAT) mass. A significant increase of hypothalamic agouti-related peptide (AgRP) gene expression and norepinephrine (NE) levels, along with a reduction of serotonin (5-HT) levels were found after MIA-690 treatment. MIA-690 was also found able to decrease gene expression of leptin in visceral adipose tissue. By contrast, MR-409 had no effect on the investigated markers. Concluding, chronic peripheral administration of MIA-690 could play an orexigenic role, paralleled by an increase in body weight. The stimulation of feeding could be mediated, albeit partially, by elevation of AgRP gene expression and NE levels and decreased 5-HT levels in the hypothalamus, along with reduced leptin gene expression, in the visceral adipose tissue.


Assuntos
Peso Corporal , Ingestão de Alimentos , Metabolismo Energético , Comportamento Alimentar/efeitos dos fármacos , Hormônio Liberador de Hormônio do Crescimento/antagonistas & inibidores , Hipotálamo/efeitos dos fármacos , Sermorelina/análogos & derivados , Animais , Feminino , Regulação da Expressão Gênica , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Sermorelina/farmacologia
17.
Sci Rep ; 11(1): 2530, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33510215

RESUMO

Besides its metabolic and endocrine effects, growth hormone (GH)-releasing hormone (GHRH) is involved in the modulation of inflammation. Recently synthetized GHRH antagonist MIA-690 and MR-409, GHRH agonist, developed by us have shown potent pharmacological effects in various experimental paradigms. However, whether their administration modify resistance to chronic inflammatory stimuli in colon is still unknown. Ex vivo results demonstrated that MIA-690 and MR-409 inhibited production of pro-inflammatory and oxidative markers induced by lipopolysaccharide on isolated mouse colon specimens. In vivo, both MIA-690 and MR-409 have also been able to decrease the responsiveness to nociceptive stimulus, in hot plate test. Additionally, both peptides also induced a decreased sensitivity to acute and persistent inflammatory stimuli in male mice, in formalin test and dextran sodium sulfate (DSS)-induced colitis model, respectively. MIA-690 and MR-409 attenuate DSS-induced colitis with particular regard to clinical manifestations, histopathological damage and release of pro-inflammatory and oxidative markers in colon specimens. Respect to MR-409, MIA-690 showed higher efficacy in inhibiting prostaglandin (PG)E2, 8-iso-PGF2α and serotonin (5-HT) levels, as well as tumor necrosis factor (TNF)-α, interleukin (IL)-6 and nitric oxide synthase gene expression in colon specimens of DSS-induced colitis. Furthermore, MIA-690 decreased serum insulin-like growth factor (IGF)-1 levels in mice DSS-treated, respect to MR-409. Thus, our findings highlight the protective effects of MIA-690 and MR-409 on inflammation stimuli. The higher antinflammatory and antioxidant activities observed with MIA-690 could be related to decreased serum IGF-1 levels.


Assuntos
Anti-Inflamatórios/farmacologia , Colite/prevenção & controle , Hormônio Liberador de Hormônio do Crescimento/farmacologia , Substâncias Protetoras/farmacologia , Animais , Biomarcadores , Biópsia , Colite/etiologia , Colite/metabolismo , Colite/patologia , Citocinas/metabolismo , Sulfato de Dextrana/efeitos adversos , Dinoprostona/metabolismo , Modelos Animais de Doenças , Hormônio Liberador de Hormônio do Crescimento/análogos & derivados , Mediadores da Inflamação/metabolismo , Mucosa Intestinal/metabolismo , Mucosa Intestinal/patologia , L-Lactato Desidrogenase/metabolismo , Lipopolissacarídeos/efeitos adversos , Camundongos , Nitritos/metabolismo
18.
Cancers (Basel) ; 13(16)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34439107

RESUMO

Pituitary adenomas (PAs) are intracranial tumors, often associated with excessive hormonal secretion and severe comorbidities. Some patients are resistant to medical therapies; therefore, novel treatment options are needed. Antagonists of growth hormone-releasing hormone (GHRH) exert potent anticancer effects, and early GHRH antagonists were found to inhibit GHRH-induced secretion of pituitary GH in vitro and in vivo. However, the antitumor role of GHRH antagonists in PAs is largely unknown. Here, we show that the GHRH antagonists of MIAMI class, MIA-602 and MIA-690, inhibited cell viability and growth and promoted apoptosis in GH/prolactin-secreting GH3 PA cells transfected with human GHRH receptor (GH3-GHRHR), and in adrenocorticotropic hormone ACTH-secreting AtT20 PA cells. GHRH antagonists also reduced the expression of proteins involved in tumorigenesis and cancer progression, upregulated proapoptotic molecules, and lowered GHRH receptor levels. The combination of MIA-690 with temozolomide synergistically blunted the viability of GH3-GHRHR and AtT20 cells. Moreover, MIA-690 reduced both basal and GHRH-induced secretion of GH and intracellular cAMP levels. Finally, GHRH antagonists inhibited cell viability in human primary GH- and ACTH-PA cell cultures. Overall, our results suggest that GHRH antagonists, either alone or in combination with pharmacological treatments, may be considered for further development as therapy for PAs.

19.
JCI Insight ; 6(5)2021 03 08.
Artigo em Inglês | MEDLINE | ID: mdl-33539327

RESUMO

Extracellular vesicles (EVs) are implicated in the crosstalk between adipocytes and other metabolic organs, and an altered biological cargo has been observed in EVs from human obese adipose tissue (AT). Yet, the role of adipocyte-derived EVs in pancreatic ß cells remains to be determined. Here, we explored the effects of EVs released from adipocytes isolated from both rodents and humans and human AT explants on survival and function of pancreatic ß cells and human pancreatic islets. EVs from healthy 3T3-L1 adipocytes increased survival and proliferation and promoted insulin secretion in INS-1E ß cells and human pancreatic islets, both those untreated or exposed to cytokines or glucolipotoxicity, whereas EVs from inflamed adipocytes caused ß cell death and dysfunction. Human lean adipocyte-derived EVs produced similar beneficial effects, whereas EVs from obese AT explants were harmful for human EndoC-ßH3 ß cells. We observed differential expression of miRNAs in EVs from healthy and inflamed adipocytes, as well as alteration in signaling pathways and expression of ß cell genes, adipokines, and cytokines in recipient ß cells. These in vitro results suggest that, depending on the physiopathological state of AT, adipocyte-derived EVs may influence ß cell fate and function.


Assuntos
Adipócitos , Tecido Adiposo , Vesículas Extracelulares/metabolismo , Ilhotas Pancreáticas , Obesidade/metabolismo , Células 3T3-L1 , Adipócitos/citologia , Adipócitos/metabolismo , Tecido Adiposo/metabolismo , Tecido Adiposo/patologia , Adulto , Animais , Feminino , Humanos , Ilhotas Pancreáticas/citologia , Ilhotas Pancreáticas/metabolismo , Masculino , Camundongos
20.
J Pathol ; 218(4): 458-66, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19373849

RESUMO

The hormone obestatin, which is derived from the same precursor as ghrelin and whose receptor(s) is still unrecognized, possesses a variety of metabolic/modulatory functions mostly related to food intake suppression and reduction of gastrointestinal motility. The distribution of obestatin in normal and neoplastic human tissues is poorly understood. We report that in fetal tissue samples, obestatin peptide was detected in the thyroid, pituitary, lung, pancreas and gastrointestinal tract, usually being co-localized with chromogranin A. In adult tissues, obestatin protein expression was restricted to pituitary, lung, pancreas and gastrointestinal tract and was co-localized strictly with ghrelin. By contrast, in endocrine tumours obestatin was expressed in a small fraction of thyroid, parathyroid, gastrointestinal and pancreatic neoplasms, in most cases with a focal immunoreactivity and co-localized with ghrelin. Messenger RNA levels of the specific fragments of ghrelin and obestatin were comparable in both normal and tumour samples, confirming that post-translational mechanisms rather than alternative splicing events lead to ghrelin/obestatin production. Finally, in TT and BON-1 cell lines obestatin induced antiproliferative effects at pharmacological doses, opposite to those observed with ghrelin. In summary, our data demonstrate that obestatin is produced by the same endocrine cells that express ghrelin in normal tissues from fetal to adult life, whereas, as compared to ghrelin, in neoplastic conditions it is down-regulated by post-translational modulation and shows potential antiproliferative properties in vitro.


Assuntos
Grelina/análise , Células Neuroendócrinas/química , Tumores Neuroendócrinos/química , Sistemas Neurossecretores/embriologia , Feto Abortado/química , Adulto , Análise de Variância , Anticorpos/farmacologia , Apoptose/efeitos dos fármacos , Linhagem Celular Tumoral , Proliferação de Células , Sondas de DNA/genética , Imunofluorescência , Grelina/imunologia , Humanos , Imuno-Histoquímica , Sistemas Neurossecretores/química , Reação em Cadeia da Polimerase Via Transcriptase Reversa/métodos , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA