Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Cell Mol Life Sci ; 69(4): 629-40, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21773671

RESUMO

Functional telomeres are protected from non-homologous end-joining (NHEJ) and homologous recombination (HR) DNA repair pathways. Replication is a critical period for telomeres because of the requirement for reconstitution of functional protected telomere conformations, a process that involves DNA repair proteins. Using knockdown of DNA-PKcs and Rad51 expression in three different cell lines, we demonstrate the respective involvement of NHEJ and HR in the formation of telomere aberrations induced by the G-quadruplex ligand 360A during or after replication. HR contributed to specific chromatid-type aberrations (telomere losses and doublets) affecting the lagging strand telomeres, whereas DNA-PKcs-dependent NHEJ was responsible for sister telomere fusions as a direct consequence of G-quadruplex formation and/or stabilization induced by 360A on parental telomere G strands. NHEJ and HR activation at telomeres altered mitotic progression in treated cells. In particular, NHEJ-mediated sister telomere fusions were associated with altered metaphase-anaphase transition and anaphase bridges and resulted in cell death during mitosis or early G1. Collectively, these data elucidate specific molecular and cellular mechanisms triggered by telomere targeting by the G-quadruplex ligand 360A, leading to cancer cell death.


Assuntos
Apoptose , Proteína Quinase Ativada por DNA/metabolismo , Quadruplex G , Mitose/genética , Proteínas Nucleares/metabolismo , Piridinas/farmacologia , Quinolinas/farmacologia , Rad51 Recombinase/metabolismo , Telômero , Anáfase , Linhagem Celular , Reparo do DNA por Junção de Extremidades , Proteína Quinase Ativada por DNA/antagonistas & inibidores , Proteína Quinase Ativada por DNA/genética , Recombinação Homóloga , Humanos , Ligantes , Metáfase , Proteínas Nucleares/antagonistas & inibidores , Proteínas Nucleares/genética , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Rad51 Recombinase/antagonistas & inibidores , Rad51 Recombinase/genética , Telômero/metabolismo , Telômero/patologia
2.
Nucleic Acids Res ; 38(9): 2955-63, 2010 May.
Artigo em Inglês | MEDLINE | ID: mdl-20147462

RESUMO

Telomere maintenance is essential to preserve genomic stability and involves several telomere-specific proteins as well as DNA replication and repair proteins. The kinase ATR, which has a crucial function in maintaining genome integrity from yeast to human, has been shown to be involved in telomere maintenance in several eukaryotic organisms, including yeast, Arabidopsis and Drosophila. However, its role in telomere maintenance in mammals remains poorly explored. Here, we report by using telomere-fluorescence in situ hybridization (Telo-FISH) on metaphase chromosomes that ATR deficiency causes telomere instability both in primary human fibroblasts from Seckel syndrome patients and in HeLa cells. The telomere aberrations resulting from ATR deficiency (i.e. sister telomere fusions and chromatid-type telomere aberrations) are mainly generated during and/or after telomere replication, and involve both leading and lagging strand telomeres as shown by chromosome orientation-FISH (CO-FISH). Moreover, we show that ATR deficiency strongly sensitizes cells to the G-quadruplex ligand 360A, enhancing sister telomere fusions and chromatid-type telomere aberrations involving specifically the lagging strand telomeres. Altogether, these data reveal that ATR plays a critical role in telomere maintenance during and/or after telomere replication in human cells.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Proteínas Serina-Treonina Quinases/fisiologia , Telômero/química , Adolescente , Adulto , Proteínas Mutadas de Ataxia Telangiectasia , Proteínas de Ciclo Celular/antagonistas & inibidores , Proteínas de Ciclo Celular/genética , Células Cultivadas , Criança , Pré-Escolar , Aberrações Cromossômicas , Feminino , Fibroblastos/química , Técnicas de Silenciamento de Genes , Células HeLa , Humanos , Masculino , Pessoa de Meia-Idade , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Serina-Treonina Quinases/genética , Piridinas/farmacologia , Quinolinas/farmacologia , Telômero/efeitos dos fármacos
3.
Nucleic Acids Res ; 36(5): 1741-54, 2008 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-18263609

RESUMO

Telomeres are known to prevent chromosome ends from being recognized as DNA double-strand breaks. Conversely, many DNA damage response proteins, including ATM, are thought to participate to telomere maintenance. However, the precise roles of ATM at telomeres remain unclear due to its multiple functions in cell checkpoints and apoptosis. To gain more insights into the role of ATM in telomere maintenance, we determined the effects of the G-quadruplex ligand 360A in various cell lines lacking functional ATM. We showed, by using Fluorescence in situ hybridization (FISH) and Chromosome Orientation-FISH using telomere PNA probes, that 360A induced specific telomere aberrations occurring during or after replication, mainly consisting in sister telomere fusions and also recombinations that involved preferentially the lagging strand telomeres. We demonstrate that ATM reduced telomere instability independently of apoptosis induction. Our results suggest thus that ATM has a direct role in preventing inappropriate DNA repair at telomeres, which could be related to its possible participation to the formation of protected structures at telomeres.


Assuntos
Proteínas de Ciclo Celular/fisiologia , Reparo do DNA , Proteínas de Ligação a DNA/fisiologia , Quadruplex G/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/fisiologia , Piridinas/toxicidade , Quinolinas/toxicidade , Telômero/química , Proteínas Supressoras de Tumor/fisiologia , Apoptose , Proteínas Mutadas de Ataxia Telangiectasia , Ciclo Celular , Proteínas de Ciclo Celular/antagonistas & inibidores , Aberrações Cromossômicas , Dano ao DNA , Proteínas de Ligação a DNA/antagonistas & inibidores , Células HeLa , Humanos , Ligantes , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Transdução de Sinais , Troca de Cromátide Irmã/efeitos dos fármacos , Telômero/efeitos dos fármacos , Proteínas Supressoras de Tumor/antagonistas & inibidores
4.
Nucleic Acids Res ; 33(13): 4182-90, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-16052031

RESUMO

The G-overhangs of telomeres are thought to adopt particular conformations, such as T-loops or G-quadruplexes. It has been suggested that G-quadruplex structures could be stabilized by specific ligands in a new approach to cancer treatment consisting in inhibition of telomerase, an enzyme involved in telomere maintenance and cell immortality. Although the formation of G-quadruplexes was demonstrated in vitro many years ago, it has not been definitively demonstrated in living human cells. We therefore investigated the chromosomal binding of a tritiated G-quadruplex ligand, 3H-360A (2,6-N,N'-methyl-quinolinio-3-yl)-pyridine dicarboxamide [methyl-3H]. We verified the in vitro selectivity of 3H-360A for G-quadruplex structures by equilibrium dialysis. We then showed by binding experiments with human genomic DNA that 3H-360A has a very potent selectivity toward G-quadruplex structures of the telomeric 3'-overhang. Finally, we performed autoradiography of metaphase spreads from cells cultured with 3H-360A. We found that 3H-360A was preferentially bound to chromosome terminal regions of both human normal (peripheral blood lymphocytes) and tumor cells (T98G and CEM1301). In conclusion, our results provide evidence that a specific G-quadruplex ligand interacts with the terminal ends of human chromosomes. They support the hypothesis that G-quadruplex ligands induce and/or stabilize G-quadruplex structures at telomeres of human cells.


Assuntos
Cromossomos Humanos/química , DNA/metabolismo , Piridinas/metabolismo , Quinolinas/metabolismo , Telômero/química , Sítios de Ligação , Linhagem Celular Tumoral , Células Cultivadas , Cromossomos Humanos/metabolismo , DNA/química , Quadruplex G , Guanina/química , Humanos , Ligantes , Linfócitos/ultraestrutura , Metáfase , Piridinas/química , Quinolinas/química , Telômero/metabolismo
5.
Oncogene ; 24(18): 2917-28, 2005 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-15735722

RESUMO

Telomerase represents a relevant target for cancer therapy. Molecules able to stabilize the G-quadruplex (G4), a structure adopted by the 3'-overhang of telomeres, are thought to inhibit telomerase by blocking its access to telomeres. We investigated the cellular effects of four new 2,6-pyridine-dicarboxamide derivatives displaying strong selectivity for G4 structures and strong inhibition of telomerase in in vitro assays. These compounds inhibited cell proliferation at very low concentrations and then induced a massive apoptosis within a few days in a dose-dependent manner in cultures of three telomerase-positive glioma cell lines, T98G, CB193 and U118-MG. They had also antiproliferative effects in SAOS-2, a cell line in which telomere maintenance involves an alternative lengthening of telomeres (ALT) mechanism. We show that apoptosis was preceded by multiple alterations of the cell cycle: activation of S-phase checkpoints, dramatic increase of metaphase duration and cytokinesis defects. These effects were not associated with telomere shortening, but they were directly related to telomere instability involving telomere end fusion and anaphase bridge formation. Pyridine-based G-quadruplex ligands are therefore promising agents for the treatment of various tumors including malignant gliomas.


Assuntos
Apoptose/fisiologia , Instabilidade Genômica/fisiologia , Telômero/genética , Telômero/metabolismo , Ciclo Celular , Divisão Celular/genética , Divisão Celular/imunologia , Glioma/tratamento farmacológico , Humanos , Ligantes , Piridinas/farmacologia , Telomerase/antagonistas & inibidores
6.
Int J Radiat Biol ; 87(6): 556-70, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21473673

RESUMO

PURPOSE: In vivo effects of tritium contamination are poorly documented. Here, we study the effects of tritiated Thymidine ([(3)H] Thymidine) or tritiated water (HTO) contamination on the biological properties of hematopoietic stem cells (HSC). MATERIALS AND METHODS: Mouse HSC were contaminated with concentrations of [(3)H] Thymidine ranging from 0.37-37.03 kBq/ml or of HTO ranging from 5-50 kBq/ml. The biological properties of contaminated HSC were studied in vitro after HTO contamination and in vitro and in vivo after [(3)H] Thymidine contamination. RESULTS: Proliferation, viability and double-strand breaks were dependent on [(3)H] Thymidine or HTO concentrations used for contamination but in vitro myeloid differentiation of HSC was not affected by [(3)H] Thymidine contamination. [(3)H] Thymidine contaminated HSC showed a compromised long-term capacity of hematopoietic reconstitution and competition experiments showed an up to two-fold decreased capacity of contaminated HSC to reconstitute hematopoiesis. These defects were not due to impaired homing in bone marrow but to an initial decreased proliferation rate of HSC. CONCLUSION: These results indicate that contaminations of HSC with doses of tritium that do not result in cell death, induce short-term effects on proliferation and cell cycle and long-term effects on hematopoietic reconstitution capacity of contaminated HSC.


Assuntos
Hematopoese/efeitos da radiação , Células-Tronco Hematopoéticas/efeitos da radiação , Trítio/farmacologia , Animais , Apoptose , Autorradiografia/métodos , Medula Óssea/metabolismo , Transplante de Medula Óssea , Ciclo Celular , Proliferação de Células , Citometria de Fluxo/métodos , Histonas/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células-Tronco
7.
Neurobiol Dis ; 19(1-2): 57-65, 2005.
Artigo em Inglês | MEDLINE | ID: mdl-15837561

RESUMO

Amyloid-beta peptide (A beta), derived from the amyloid-beta precursor protein (APP), plays a central role in the pathogenesis of Alzheimer's disease and induces neuronal apoptosis. Neural progenitor cells persist in the adult mammalian brain and continue to produce new neurons throughout the life. The aim of our study was to establish the effects of A beta on neural progenitor cells (NPC). We found that the neurotoxic peptide A beta 25-35 induced apoptosis of both neurons and NPC in wild-type (wt) primary cortical cultures derived from mouse embryos. Contrary to neurons, NPC were also subjected to apoptosis in response to A beta 25-35 in both fas-/- and Z-VAD/fmk (the broad-spectrum caspase inhibitor)-treated wt cortical cultures indicating that A beta triggers a Fas- and caspase-independent apoptotic pathway in NPC. Interestingly, we also show that A beta induces neurospheres adherence and NPC neuronal differentiation. Further studies are thus needed in order to understand the role of A beta effects on NPC in AD pathology. Understanding the mechanisms involved may also be essential for the development of new regenerative therapies in AD.


Assuntos
Peptídeos beta-Amiloides/farmacologia , Apoptose/fisiologia , Diferenciação Celular/fisiologia , Neurônios/fisiologia , Receptores do Fator de Necrose Tumoral/deficiência , Células-Tronco/fisiologia , Animais , Apoptose/efeitos dos fármacos , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Córtex Cerebral/citologia , Córtex Cerebral/efeitos dos fármacos , Córtex Cerebral/fisiologia , Camundongos , Camundongos Congênicos , Camundongos Endogâmicos C57BL , Neurônios/citologia , Neurônios/efeitos dos fármacos , Receptores do Fator de Necrose Tumoral/genética , Células-Tronco/citologia , Células-Tronco/efeitos dos fármacos , Receptor fas
8.
J Cell Biochem ; 93(5): 968-79, 2004 Nov 15.
Artigo em Inglês | MEDLINE | ID: mdl-15389875

RESUMO

TRF1 and Pin2 play an essential role in telomere homeostasis, by regulating telomere maintenance. They are generated from the same gene, TRF1/Pin2, by alternative splicing but no functional differences between these proteins have been demonstrated. We report here the detection of new alternative transcripts of the TRF1/Pin2 gene in peripheral blood lymphocytes resulting from a 76 nt insertion. Real-time RT-PCR showed that these transcripts were also produced in various normal human cells and tissues and in immortalized cell lines, but at levels lower (by a factor of 8-111) than those for the TRF1 and Pin2 transcripts. These new transcripts are predicted to encode polypeptides identical to TRF1/Pin2 at the C-terminal end but entirely lacking the acid domain and the amino-terminal part of the homodimerization domain of TRF1/Pin2. These proteins, fused at their N-terminal ends to enhanced green fluorescent protein (EGFP), were found to be located at telomeres and to induce apoptosis in cell lines with short telomeres, thereby displaying similar activity to TRF1/Pin2. However, these putative proteins lack regions important for interactions with other proteins and for homodimerization. Unlike TRF1/Pin2, they were unable to interact with tankyrase 1, suggesting that these proteins may play a role in telomere homeostasis different from those of TRF1/Pin2. The production of these alternative transcripts was down-regulated in peripheral blood lymphocytes following PHA-p activation, suggesting a possible role in resting lymphocytes.


Assuntos
Processamento Alternativo , Telômero/metabolismo , Proteína 1 de Ligação a Repetições Teloméricas/genética , Proteína 1 de Ligação a Repetições Teloméricas/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Humanos , Linfócitos/metabolismo , Dados de Sequência Molecular , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Tanquirases/metabolismo , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA