Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 21
Filtrar
1.
Proc Natl Acad Sci U S A ; 121(22): e2405123121, 2024 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-38781208

RESUMO

Mitochondria play a central role in muscle metabolism and function. A unique family of iron-sulfur proteins, termed CDGSH Iron Sulfur Domain-containing (CISD/NEET) proteins, support mitochondrial function in skeletal muscles. The abundance of these proteins declines during aging leading to muscle degeneration. Although the function of the outer mitochondrial CISD/NEET proteins, CISD1/mitoNEET and CISD2/NAF-1, has been defined in skeletal muscle cells, the role of the inner mitochondrial CISD protein, CISD3/MiNT, is currently unknown. Here, we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne muscular dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscles, as well as their mitochondria, and that CISD3 interacts with, and donates its [2Fe-2S] clusters to, complex I respiratory chain subunit NADH Ubiquinone Oxidoreductase Core Subunit V2 (NDUFV2). Using coevolutionary and structural computational tools, we model a CISD3-NDUFV2 complex with proximal coevolving residue interactions conducive of [2Fe-2S] cluster transfer reactions, placing the clusters of the two proteins 10 to 16 Å apart. Taken together, our findings reveal that CISD3/MiNT is important for supporting the biogenesis and function of complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact different muscle degeneration syndromes, aging, and related conditions.


Assuntos
Complexo I de Transporte de Elétrons , Proteínas Mitocondriais , Músculo Esquelético , Animais , Músculo Esquelético/metabolismo , Músculo Esquelético/patologia , Camundongos , Complexo I de Transporte de Elétrons/metabolismo , Complexo I de Transporte de Elétrons/genética , Proteínas Mitocondriais/metabolismo , Proteínas Mitocondriais/genética , Mitocôndrias/metabolismo , Proteínas Ferro-Enxofre/metabolismo , Proteínas Ferro-Enxofre/genética , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Humanos , Atrofia Muscular/metabolismo , Atrofia Muscular/patologia , Atrofia Muscular/genética , Distrofia Muscular de Duchenne/metabolismo , Distrofia Muscular de Duchenne/patologia , Distrofia Muscular de Duchenne/genética
2.
FASEB J ; 38(17): e70035, 2024 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-39239798

RESUMO

Pre-implantation embryonic development occurs in the oviduct during the first few days of pregnancy. The presence of oviductal extracellular vesicles (oEVs, also called oviductosomes) is crucial for pre-implantation embryonic development in vivo as oEVs often contain molecular transmitters such as proteins. Therefore, evaluating oEV cargo during early pregnancy could provide insights into factors required for proper early embryonic development that are missing in the current in vitro embryo culture setting. In this study, we isolated oEVs from the oviductal fluid at estrus and different stages of early embryonic development. The 2306-3066 proteins in oEVs identified at the different time points revealed 58-60 common EV markers identified in exosome databases. Oviductal extracellular vesicle proteins from pregnant samples significantly differed from those in non-pregnant samples. In addition, superovulation changes the protein contents in oEVs compared to natural ovulation at estrus. Importantly, we have identified that embryo-protectant proteins such as high-mobility protein group B1 and serine (or cysteine) peptidase inhibitor were only enriched in the presence of embryos. We also visualized the physical interaction of EVs and the zona pellucida of 4- to 8-cell stage embryos using transmission electron microscopy as well as in vivo live imaging of epithelial cell-derived GFP-tagged CD9 mouse model. All protein data in this study are readily available to the scientific community in a searchable format at https://genes.winuthayanon.com/winuthayanon/oviduct_ev_proteins/. In conclusion, we identified oEVs proteins that could be tested to determine whether they can improve embryonic developmental outcomes in vivo and in vitro setting.


Assuntos
Desenvolvimento Embrionário , Vesículas Extracelulares , Proteômica , Animais , Feminino , Camundongos , Vesículas Extracelulares/metabolismo , Desenvolvimento Embrionário/fisiologia , Proteômica/métodos , Gravidez , Oviductos/metabolismo , Tubas Uterinas/metabolismo , Camundongos Endogâmicos C57BL
3.
FASEB J ; 38(14): e23764, 2024 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-39042395

RESUMO

The mosquito, Aedes aegypti, is the principal vector for several arboviruses. The mosquito midgut is the initial tissue that gets infected with an arbovirus acquired along with a blood meal from a vertebrate host. Blood meal ingestion leads to midgut tissue distention thereby increasing the pore size of the surrounding basal lamina. This allows newly synthesized virions to exit the midgut by traversing the distended basal lamina to infect secondary tissues of the mosquito. We conducted a quantitative label-free proteomic time course analysis with saline meal-fed Ae. aegypti females to identify host factors involved in midgut tissue distention. Around 2000 proteins were detected during each of the seven sampling time points and 164 of those were uniquely expressed. Forty-five of 97 differentially expressed proteins were upregulated during the 96-h time course and most of those were involved in cytoskeleton modulation, metabolic activity, and vesicle/vacuole formation. The F-actin-modulating Ae. aegypti (Aa)-gelsolin was selected for further functional studies. Stable knockout of Aa-gelsolin resulted in a mosquito line, which showed distorted actin filaments in midgut-associated tissues likely due to diminished F-actin processing by gelsolin. Zika virus dissemination from the midgut of these mosquitoes was diminished and delayed. The loss of Aa-gelsolin function was associated with an increased induction of apoptosis in midgut tissue indicating an involvement of Aa-gelsolin in apoptotic signaling in mosquitoes. Here, we used proteomics to discover a novel host factor, Aa-gelsolin, which affects the midgut escape barrier for arboviruses in mosquitoes and apoptotic signaling in the midgut.


Assuntos
Aedes , Arbovírus , Gelsolina , Proteínas de Insetos , Animais , Aedes/virologia , Aedes/metabolismo , Gelsolina/metabolismo , Gelsolina/genética , Proteínas de Insetos/metabolismo , Proteínas de Insetos/genética , Arbovírus/fisiologia , Citoesqueleto/metabolismo , Feminino , Mosquitos Vetores/virologia , Mosquitos Vetores/metabolismo , Proteômica/métodos , Zika virus/fisiologia
4.
Plant Cell ; 33(10): 3348-3366, 2021 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-34323976

RESUMO

Carbohydrate partitioning from leaves to sink tissues is essential for plant growth and development. The maize (Zea mays) recessive carbohydrate partitioning defective28 (cpd28) and cpd47 mutants exhibit leaf chlorosis and accumulation of starch and soluble sugars. Transport studies with 14C-sucrose (Suc) found drastically decreased export from mature leaves in cpd28 and cpd47 mutants relative to wild-type siblings. Consistent with decreased Suc export, cpd28 mutants exhibited decreased phloem pressure in mature leaves, and altered phloem cell wall ultrastructure in immature and mature leaves. We identified the causative mutations in the Brittle Stalk2-Like3 (Bk2L3) gene, a member of the COBRA family, which is involved in cell wall development across angiosperms. None of the previously characterized COBRA genes are reported to affect carbohydrate export. Consistent with other characterized COBRA members, the BK2L3 protein localized to the plasma membrane, and the mutants condition a dwarf phenotype in dark-grown shoots and primary roots, as well as the loss of anisotropic cell elongation in the root elongation zone. Likewise, both mutants exhibit a significant cellulose deficiency in mature leaves. Therefore, Bk2L3 functions in tissue growth and cell wall development, and this work elucidates a unique connection between cellulose deposition in the phloem and whole-plant carbohydrate partitioning.


Assuntos
Metabolismo dos Carboidratos , Parede Celular/metabolismo , Proteínas de Plantas/genética , Zea mays/genética , Proteínas de Plantas/metabolismo , Zea mays/metabolismo
5.
Exp Eye Res ; 216: 108933, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35031282

RESUMO

A characteristic rigid spatial arrangement of collagen fibrils in the stroma is critical for corneal transparency. This unique organization of collagen fibrils in corneal stroma can be impacted by the presence and interactions of proteoglycans and extracellular matrix (ECM) proteins in a corneal microenvironment. Earlier studies revealed that decorin, a leucine-rich proteoglycan in stroma, regulates keratocyte-collagen matrix assembly and wound healing in the cornea. This study investigated the role of decorin in the regulation of stromal fibrillogenesis and corneal transparency in vivo employing a loss-of-function genetic approach using decorin null (dcn-/-) and wild type (dcn+/+) mice and a standard alkali-injury model. A time-dependent ocular examinations with Slit lamp microscope in live animals assessed corneal clarity, haze, and neovascularization levels in normal and injured eyes. Morphometric changes in normal and injured dcn+/+ and dcn-/- corneas, post-euthanasia, were analyzed with Masson's Trichrome and Periodic Acid-Schiff (PAS) histology evaluations. The ultrastructure changes in all corneas were investigated with transmission electron microscopy (TEM). Injury to eye produced clinically relevant corneal haze and neovascularization in dcn-/- and dcn+/+ mice while corneas of uninjured eyes remained clear and avascular. A clinically significant haze and neovascularization appeared in injured dcn-/- corneas compared to the dcn+/+ corneas at day 21 post-injury and not at early tested times. Histological examinations revealed noticeably abnormal morphology and compromised collagen levels in injured dcn-/- corneas compared to the injured/normal dcn+/+ and uninjured dcn-/- corneas. TEM analysis exhibited remarkably uneven collagen fibrils size and distribution in the stroma with asymmetrical organization and loose packing in injured dcn-/- corneas than injured/normal dcn+/+ and uninjured dcn-/- corneas. The minimum and maximum inter-fibril distances were markedly irregular in injured dcn-/- corneas compared to all other corneas. Together, results of clinical, histological, and ultrastructural investigations in a genetic knockout model suggested that decorin influenced stromal fibrillogenesis and transparency in healing cornea.


Assuntos
Lesões da Córnea/metabolismo , Decorina/fisiologia , Colágenos Fibrilares/metabolismo , Organogênese/fisiologia , Cicatrização/fisiologia , Animais , Queimaduras Químicas/metabolismo , Lesões da Córnea/patologia , Proteínas da Matriz Extracelular/metabolismo , Queimaduras Oculares/induzido quimicamente , Colágenos Fibrilares/ultraestrutura , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Camundongos Transgênicos , Microscopia Eletrônica de Transmissão , Microscopia com Lâmpada de Fenda , Hidróxido de Sódio
6.
Plant J ; 101(5): 1152-1169, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31642128

RESUMO

Iron-sulfur (Fe-S) clusters play an essential role in plants as protein cofactors mediating diverse electron transfer reactions. Because they can react with oxygen to form reactive oxygen species (ROS) and inflict cellular damage, the biogenesis of Fe-S clusters is highly regulated. A recently discovered group of 2Fe-2S proteins, termed NEET proteins, was proposed to coordinate Fe-S, Fe and ROS homeostasis in mammalian cells. Here we report that disrupting the function of AtNEET, the sole member of the NEET protein family in Arabidopsis thaliana, triggers leaf-associated Fe-S- and Fe-deficiency responses, elevated Fe content in chloroplasts (1.2-1.5-fold), chlorosis, structural damage to chloroplasts and a high seedling mortality rate. Our findings suggest that disrupting AtNEET function disrupts the transfer of 2Fe-2S clusters from the chloroplastic 2Fe-2S biogenesis pathway to different cytosolic and chloroplastic Fe-S proteins, as well as to the cytosolic Fe-S biogenesis system, and that uncoupling this process triggers leaf-associated Fe-S- and Fe-deficiency responses that result in Fe over-accumulation in chloroplasts and enhanced ROS accumulation. We further show that AtNEET transfers its 2Fe-2S clusters to DRE2, a key protein of the cytosolic Fe-S biogenesis system, and propose that the availability of 2Fe-2S clusters in the chloroplast and cytosol is linked to Fe homeostasis in plants.


Assuntos
Proteínas de Arabidopsis/metabolismo , Arabidopsis/genética , Proteínas Ferro-Enxofre/metabolismo , Ferro/metabolismo , Enxofre/metabolismo , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Cloroplastos/metabolismo , Citosol/fisiologia , Transporte de Elétrons , Homeostase , Proteínas Ferro-Enxofre/genética , Espécies Reativas de Oxigênio/metabolismo
7.
Res Sq ; 2023 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-37609321

RESUMO

Photoreceptors in the retina are specialized neuronal cells that perceive light and play a central role in the visual system. Damage to photoreceptors is a clinical feature often associated with various retinal degenerative disorders. The photoreceptor bed comprises a unique extracellular matrix (ECM) scaffold often described as the interphotoreceptor matrix (IPM) in the subretinal space, vital during retinal development and homeostasis. In this study, we used focused ion beam scanning electron microscopy (FIB-SEM) and transmission electron microscopy (TEM) to analyze the ultrastructural architecture of the retinal pigmented epithelium (RPE)-photoreceptor complex in mice. Additionally, we describe methods for retinal preparation in EM imaging. TEM images display ultrastructural retina layers, including Bruch's membrane and the interdigitation zone (IZ). The 3-dimensional reconstruction of the outer retina revealed individual photoreceptors, the connection between their inner and outer segment via the photoreceptor cilia, and photoreceptor interaction with the RPE ciliary processes. Our findings highlight the importance of FIB-SEM in deciphering the ultrastructural details of RPE-photoreceptor interactions in the IPM complex which are essential for the maintenance of retinal architecture.

8.
Cell Death Discov ; 9(1): 325, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37652915

RESUMO

Cell Penetrating Peptides (CPPs) are promising anticancer and antimicrobial drugs. We recently reported that a peptide derived from the human mitochondrial/ER membrane-anchored NEET protein, Nutrient Autophagy Factor 1 (NAF-1; NAF-144-67), selectively permeates and kills human metastatic epithelial breast cancer cells (MDA-MB-231), but not control epithelial cells. As cancer cells alter their phenotype during growth and metastasis, we tested whether NAF-144-67 would also be efficient in killing other human epithelial breast cancer cells that may have a different phenotype. Here we report that NAF-144-67 is efficient in killing BT-549, Hs 578T, MDA-MB-436, and MDA-MB-453 breast cancer cells, but that MDA-MB-157 cells are resistant to it. Upon closer examination, we found that MDA-MB-157 cells display a high content of intracellular vesicles and cellular protrusions, compared to MDA-MB-231 cells, that could protect them from NAF-144-67. Inhibiting the formation of intracellular vesicles and dynamics of cellular protrusions of MDA-MB-157 cells, using a protein translation inhibitor (the antibiotic Cycloheximide), rendered these cells highly susceptible to NAF-144-67, suggesting that under certain conditions, the killing effect of CPPs could be augmented when they are applied in combination with an antibiotic or chemotherapy agent. These findings could prove important for the treatment of metastatic cancers with CPPs and/or treatment combinations that include CPPs.

9.
bioRxiv ; 2023 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-37398338

RESUMO

Mitochondria play a central role in muscle metabolism and function. In skeletal muscles, a unique family of iron-sulfur proteins, termed CISD proteins, support mitochondrial function. The abundance of these proteins declines with aging leading to muscle degeneration. Although the function of the outer mitochondrial proteins CISD1 and CISD2 has been defined, the role of the inner mitochondrial protein CISD3, is currently unknown. Here we show that CISD3 deficiency in mice results in muscle atrophy that shares proteomic features with Duchenne Muscular Dystrophy. We further reveal that CISD3 deficiency impairs the function and structure of skeletal muscle mitochondria, and that CISD3 interacts with, and donates its clusters to, Complex I respiratory chain subunit NDUFV2. These findings reveal that CISD3 is important for supporting the biogenesis and function of Complex I, essential for muscle maintenance and function. Interventions that target CISD3 could therefore impact muscle degeneration syndromes, aging, and related conditions.

10.
Acta Neuropathol Commun ; 11(1): 144, 2023 09 06.
Artigo em Inglês | MEDLINE | ID: mdl-37674234

RESUMO

Mild traumatic brain injury (mTBI) induced by low-intensity blast (LIB) is a serious health problem affecting military service members and veterans. Our previous reports using a single open-field LIB mouse model showed the absence of gross microscopic damage or necrosis in the brain, while transmission electron microscopy (TEM) identified ultrastructural abnormalities of myelin sheaths, mitochondria, and synapses. The neurovascular unit (NVU), an anatomical and functional system with multiple components, is vital for the regulation of cerebral blood flow and cellular interactions. In this study, we delineated ultrastructural abnormalities affecting the NVU in mice with LIB exposure quantitatively and qualitatively. Luminal constrictive irregularities were identified at 7 days post-injury (DPI) followed by dilation at 30 DPI along with degeneration of pericytes. Quantitative proteomic analysis identified significantly altered vasomotor-related proteins at 24 h post-injury. Endothelial cell, basement membrane and astrocyte end-foot swellings, as well as vacuole formations, occurred in LIB-exposed mice, indicating cellular edema. Structural abnormalities of tight junctions and astrocyte end-foot detachment from basement membranes were also noted. These ultrastructural findings demonstrate that LIB induces multiple-component NVU damage. Prevention of NVU damage may aid in identifying therapeutic targets to mitigate the effects of primary brain blast injury.


Assuntos
Traumatismos por Explosões , Concussão Encefálica , Lesões Encefálicas , Animais , Camundongos , Proteômica , Arvicolinae , Membrana Basal
11.
Sci Signal ; 14(671)2021 02 23.
Artigo em Inglês | MEDLINE | ID: mdl-33622982

RESUMO

Systemic signaling and systemic acquired acclimation (SAA) are key to the survival of plants during episodes of abiotic stress. These processes depend on a continuous chain of cell-to-cell signaling events that extends from the initial tissue that senses the stress (the local tissue) to the entire plant (systemic tissues). Reactive oxygen species (ROS) and Ca2+ are key signaling molecules thought to be involved in this cell-to-cell mechanism. Here, we report that the systemic response of Arabidopsis thaliana to a local treatment of high light stress, which resulted in local ROS accumulation, required ROS generated by respiratory burst oxidase homolog D (RBOHD). ROS increased cell-to-cell transport and plasmodesmata (PD) pore size in a manner dependent on PD-localized protein 1 (PDLP1) and PDLP5, and this process was required for the propagation of the systemic ROS signals and SAA. Furthermore, aquaporins and several Ca2+-permeable channels in the glutamate receptor-like (GLR), mechanosensitive small conductance-like (MSL), and cyclic nucleotide-gated (CNGC) families were involved in this systemic signaling process. However, we determined that these channels were required primarily to amplify the systemic signal in each cell along the path of the systemic ROS wave, as well as to establish local and systemic acclimation. Thus, PD and RBOHD-generated ROS orchestrate light stress-induced rapid cell-to-cell spread of systemic signals in Arabidopsis.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Luz , Plasmodesmos , Espécies Reativas de Oxigênio , Arabidopsis/genética , Arabidopsis/metabolismo , Arabidopsis/efeitos da radiação , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Regulação da Expressão Gênica de Plantas , NADPH Oxidases/genética , Plasmodesmos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Estresse Fisiológico
12.
PLoS Negl Trop Dis ; 15(11): e0010003, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34843483

RESUMO

Aedes aegypti is the primary vector of Zika virus (ZIKV), a flavivirus which typically presents itself as febrile-like symptoms in humans but can also cause neurological and pregnancy complications. The transmission cycle of mosquito-borne arboviruses such as ZIKV requires that various key tissues in the female mosquito get productively infected with the virus before the mosquito can transmit the virus to another vertebrate host. Following ingestion of a viremic blood-meal from a vertebrate, ZIKV initially infects the midgut epithelium before exiting the midgut after blood-meal digestion to disseminate to secondary tissues including the salivary glands. Here we investigated whether smaller Ae. aegypti females resulting from food deprivation as larvae exhibited an altered vector competence for blood-meal acquired ZIKV relative to larger mosquitoes. Midguts from small 'Starve' and large 'Control' Ae. aegypti were dissected to visualize by transmission electron microscopy (TEM) the midgut basal lamina (BL) as physical evidence for the midgut escape barrier showing Starve mosquitoes with a significantly thinner midgut BL than Control mosquitoes at two timepoints. ZIKV replication was inhibited in Starve mosquitoes following intrathoracic injection of virus, however, Starve mosquitoes exhibited a significantly higher midgut escape and population dissemination rate at 9 days post-infection (dpi) via blood-meal, with more virus present in saliva and head tissue than Control by 10 dpi and 14 dpi, respectively. These results indicate that Ae. aegypti developing under stressful conditions potentially exhibit higher midgut infection and dissemination rates for ZIKV as adults, Thus, variation in food intake as larvae is potentially a source for variable vector competence levels of the emerged adults for the virus.


Assuntos
Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Larva/virologia , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/fisiologia , Aedes/virologia , Animais , Membrana Basal/virologia , Feminino , Larva/crescimento & desenvolvimento , Larva/fisiologia , Masculino , Mosquitos Vetores/virologia , Glândulas Salivares/virologia , Zika virus/fisiologia
13.
Brain Sci ; 9(3)2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30866531

RESUMO

Type 2 diabetes is associated with diabetic cognopathy. Anti-hyperglycemic sodium glucose transporter 2 (SGLT2) inhibitors have shown promise in reducing cognitive impairment in mice with type 2 diabetes mellitus. We recently described marked ultrastructural (US) remodeling of the neurovascular unit (NVU) in type 2 diabetic db/db female mice. Herein, we tested whether the SGLT-2 inhibitor, empagliflozin (EMPA), protects the NVU from abnormal remodeling in cortical gray and subcortical white matter. Ten-week-old female wild-type and db/db mice were divided into lean controls (CKC, n = 3), untreated db/db (DBC, n = 3), and EMPA-treated db/db (DBE, n = 3). Empagliflozin was added to mouse chow to deliver 10 mg kg-1 day-1 and fed for ten weeks, initiated at 10 weeks of age. Brains from 20-week-old mice were immediately immersion fixed for transmission electron microscopic study. Compared to CKC, DBC exhibited US abnormalities characterized by mural endothelial cell tight and adherens junction attenuation and/or loss, pericyte attenuation and/or loss, basement membrane thickening, glia astrocyte activation with detachment and retraction from mural cells, microglia cell activation with aberrant mitochondria, and oligodendrocyte⁻myelin splitting, disarray, and axonal collapse. We conclude that these abnormalities in the NVU were prevented in DBE. Empagliflozin may provide neuroprotection in the diabetic brain.

14.
Viruses ; 11(11)2019 11 14.
Artigo em Inglês | MEDLINE | ID: mdl-31739432

RESUMO

The arboviral disease cycle requires that key tissues in the arthropod vector become persistently infected with the virus. The midgut is the first organ in the mosquito that needs to be productively infected with an orally acquired virus. Following midgut infection, the virus then disseminates to secondary tissues including the salivary glands. Once these are productively infected, the mosquito is able to transmit the virus to a vertebrate host. Recently, we described the midgut dissemination pattern for chikungunya virus in Aedes aegypti. Here we assess the dissemination pattern in the same mosquito species for Zika virus (ZIKV), a human pathogenic virus belonging to the Flaviviridae. ZIKV infection of secondary tissues, indicative of dissemination from the midgut, was not observed before 72 h post infectious bloodmeal (pibm). Virion accumulation at the midgut basal lamina (BL) was only sporadic, although at 96-120 h pibm, virions were frequently observed between strands of the BL indicative of their dissemination. Our data suggest that ZIKV dissemination from the mosquito midgut occurs after digestion of the bloodmeal. Using gold-nanoparticles of 5 nm and 50 nm size, we show that meal ingestion leads to severe midgut tissue distention, causing the mesh width of the BL to remain enlarged after complete digestion of the meal. This could explain how ZIKV can exit the midgut via the BL after bloodmeal digestion. Ingestion of a subsequent, non-infectious bloodmeal five days after acquisition of an initial, dengue 4 virus containing bloodmeal resulted in an increased number of virions present in the midgut epithelium adjacent to the BL. Thus, subsequent bloodmeal ingestion by an infected mosquito may primarily stimulate de novo synthesis of virions leading to increased viral titers in the vector.


Assuntos
Aedes/virologia , Membrana Basal/virologia , Trato Gastrointestinal/virologia , Mosquitos Vetores/virologia , Infecção por Zika virus/transmissão , Infecção por Zika virus/virologia , Zika virus/fisiologia , Animais , Membrana Basal/ultraestrutura , Vírus da Dengue , Feminino , Carga Viral , Ensaio de Placa Viral
15.
Water Res ; 149: 640-649, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30594003

RESUMO

Peracetic acid (PAA) is a promising alternative to chlorine for disinfection; however, bacterial regrowth after PAA disinfection is poorly understood. This study compared the regrowth of bacteria (Gram-negative Pseudomonas aeruginosa PAO1 and Gram-positive Bacillus sp.) after disinfection with PAA or free chlorine. In the absence of organic matter, PAA and free chlorine prevented the regrowth of planktonic cells of P. aeruginosa PAO1 at C·t (= disinfectant concentration × contact time) doses of (28.5 ±â€¯9.8) mg PAA·min·L-1 and (22.5 ±â€¯10.6) mg Cl2·min·L-1, respectively, suggesting that they had comparable efficiencies in preventing the regrowth of planktonic bacteria. For comparison, the minimum C·t doses of PAA and free chlorine to prevent the regrowth of P. aeruginosa PAO1 biofilm cells in the absence of organic matter were (14,000 ±â€¯1,732) mg PAA·min·L-1 and (6,500 ±â€¯2,291) mg Cl2·min·L-1, respectively. PAA was less effective than free chlorine in killing bacteria within biofilms in the absence of organic matter most likely because PAA reacts with biofilm matrix constituents slower than free chlorine. In the presence of organic matter, although the bactericidal efficiencies of both disinfectants significantly decreased, PAA was less affected due to its slower reaction with organic matter and/or slower self-decomposition. For instance, in a dilute Lysogeny broth-Miller, the minimum concentrations of PAA and free chlorine to prevent the regrowth of planktonic P. aeruginosa PAO1 were 20 mg PAA·L-1 and 300 mg Cl2·L-1, respectively. While both disinfectants are strong oxidants disrupting cell membrane, environmental scanning electron microscopy (ESEM) revealed that PAA made holes in the center of the cells, whereas free chlorine desiccated the cells. Overall, this study shows that PAA is a powerful disinfectant to prevent bacterial regrowth even in the presence of organic matter.


Assuntos
Desinfetantes , Ácido Peracético , Bactérias , Biofilmes , Cloro , Desinfecção , Plâncton
16.
J Neurotrauma ; 36(13): 2117-2128, 2019 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-30667346

RESUMO

Service members during military actions or combat training are exposed frequently to primary blast generated by explosive weaponry. The majority of military-related neurotrauma are classified as mild and designated as "invisible injuries" that are prevalent during current conflicts. While the previous experimental blast injury studies using moderate- to high-intensity exposures focused mainly on gross and microscopic neuropathology, our previous studies have shown that low-intensity blast (LIB) exposures resulted in nanoscale subcellular myelin and mitochondrial damages and subsequent behavioral disorders in the absence of gross or detectable cellular damage. In this study, we used transmission electron microscopy to delineate the LIB effects at the ultrastructural level specifically focusing on the neuron perikaryon, axons, and synapses in the cortex and hippocampus of mice at seven and 30 days post-injury (DPI). We found dysmorphic dark neuronal perikaryon and "cytoplasmic aeration" of dendritic processes, as well as increased microtubular fragmentation of the myelinated axons along with biochemically measured elevated tau/phosphorylated tau/Aß levels. The number of cortical excitatory synapses decreased along with a compensatory increase of the post-synaptic density (PSD) thickness both at seven and 30 DPI, while the amount of hippocampal CA1 synapses increased with the reduced PSD thickness. In addition, we observed a significant increase in protein levels of PSD95 and synaptophysin mainly at seven DPI indicating potential synaptic reorganization. These results demonstrated that a single LIB exposure can lead to ultrastructural brain injury with accompanying multi-focal neuronal organelle alterations. This pre-clinical study provides key insights into disease pathogenesis related to primary blast exposure.


Assuntos
Traumatismos por Explosões/patologia , Lesões Encefálicas Traumáticas/patologia , Traumatismos Cranianos Fechados/patologia , Neurônios/patologia , Sinapses/patologia , Animais , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Neurônios/ultraestrutura , Sinapses/ultraestrutura
17.
J Appl Physiol (1985) ; 126(6): 1550-1562, 2019 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-30946636

RESUMO

Angiotensin II (ANG II)-induced skeletal muscle wasting is characterized by activation of the ubiquitin-proteasome system. However, the potential involvement of proteolytic system macroautophagy/autophagy in this wasting process remains elusive. Autophagy is precisely regulated to maintain cell survival and homeostasis; thus its dysregulation (i.e., overactivation or persistent suppression) could lead to detrimental outcomes in skeletal muscle. Here we show that infusion of ANG II for 7 days in male FVB mice suppressed autophagy in skeletal muscle. ANG II blunted microtubule-associated protein 1 light chain 3B (LC3B)-I-to-LC3B-II conversion (an autophagosome marker), increased p62/SQSTM1 (an autophagy cargo receptor) protein expression, and decreased the number of autophagic vacuoles. ANG II inhibited UNC-51-like kinase 1 via inhibition of 5'-AMP-activated kinase and activation of mechanistic target of rapamycin complex 1, leading to reduced phosphorylation of beclin-1Ser14 and Autophagy-related protein 14Ser29, suggesting that ANG II impairs autophagosome formation in skeletal muscle. In line with ANG II-mediated suppression of autophagy, ANG II promoted accumulation of abnormal/damaged mitochondria, characterized by swelling and disorganized cristae and matrix dissolution, with associated increase in PTEN-induced kinase 1 protein expression. ANG II also reduced mitochondrial respiration, indicative of mitochondrial dysfunction. Together, these results demonstrate that ANG II reduces autophagic activity and disrupts mitochondrial ultrastructure and function, likely contributing to skeletal muscle wasting. Therefore, strategies that activate autophagy in skeletal muscle have the potential to prevent or blunt ANG II-induced skeletal muscle wasting in chronic diseases. NEW & NOTEWORTHY Our study identified a novel mechanism whereby angiotensin II (ANG II) impairs mitochondrial energy metabolism in skeletal muscle. ANG II suppressed autophagosome formation by inhibiting the UNC-51-like kinase 1(ULK1)-beclin-1 axis, resulting in accumulation of abnormal/damaged and dysfunctional mitochondria and reduced mitochondrial respiratory capacity. Therapeutic strategies that activate the ULK1-beclin-1 axis have the potential to delay or reverse skeletal muscle wasting in chronic diseases characterized by increased systemic ANG II levels.


Assuntos
Angiotensina II/farmacologia , Autofagia/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Músculo Esquelético/efeitos dos fármacos , Animais , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Proteína Beclina-1/metabolismo , Masculino , Camundongos , Mitocôndrias/metabolismo , Músculo Esquelético/metabolismo , Atrofia Muscular/tratamento farmacológico , Atrofia Muscular/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais/efeitos dos fármacos
18.
Viruses ; 10(10)2018 10 18.
Artigo em Inglês | MEDLINE | ID: mdl-30340365

RESUMO

The transmission cycle of chikungunya virus (CHIKV) requires that mosquito vectors get persistently infected with the virus, following its oral acqsuisition from a vertebrate host. The mosquito midgut is the initial organ that gets infected with orally acquired CHIKV. Following its replication in the midgut epithelium, the virus exits the midgut and infects secondary tissues including the salivary glands before being transmitted to another host. Here, we investigate the pattern of CHIKV dissemination from the midgut of Aedes aegypti at the ultrastructural level. Bloodmeal ingestion caused overstretching of the midgut basal lamina (BL), which was disrupted in areas adjacent to muscles surrounding the midgut as shown by scanning electron microscopy (SEM). Using both transmission electron microscopy (TEM) and focused ion beam scanning electron microscopy (FIB-SEM) to analyze midgut preparations, mature chikungunya (CHIK) virions were found accumulating at the BL and within strands of the BL at 24⁻32 h post-infectious bloodmeal (pibm). From 48 h pibm onwards, virions no longer congregated at the BL and became dispersed throughout the basal labyrinth of the epithelial cells. Ingestion of a subsequent, non-infectious bloodmeal caused mature virions to congregate again at the midgut BL. Our study suggests that CHIKV needs a single replication cycle in the midgut epithelium before mature virions directly traverse the midgut BL during a relatively narrow time window, within 48 h pibm.


Assuntos
Aedes/virologia , Vírus Chikungunya/ultraestrutura , Mosquitos Vetores/virologia , Aedes/crescimento & desenvolvimento , Aedes/fisiologia , Animais , Membrana Basal/ultraestrutura , Membrana Basal/virologia , Vírus Chikungunya/genética , Vírus Chikungunya/isolamento & purificação , Vírus Chikungunya/fisiologia , Feminino , Trato Gastrointestinal/ultraestrutura , Trato Gastrointestinal/virologia , Microscopia Eletrônica de Transmissão , Mosquitos Vetores/crescimento & desenvolvimento , Mosquitos Vetores/fisiologia , Glândulas Salivares/ultraestrutura , Glândulas Salivares/virologia
19.
Invest Ophthalmol Vis Sci ; 59(6): 2325-2338, 2018 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-29847637

RESUMO

Purpose: Recent clinical data suggest an increasing prevalence of obesity and type 2 diabetes in adolescents, placing them at high risk of developing diabetic retinopathy during adult working years. The present study was designed to characterize the early retinal and microvascular alterations in young Ossabaw pigs fed a Western diet, described as a model of metabolic syndrome genetically predisposed to type 2 diabetes. Methods: Four-month-old Ossabaw miniature pigs were divided into two groups, lean and diet-induced obesity. Obese pigs were fed a Western diet with high-fat/high-fructose corn syrup/high-choleric content for 10 weeks. Blood and retina were collected for biochemical profiling, trypsin digest, flatmounts, Fluoro-Jade C staining, electron microscopy, quantitative PCR, immunohistochemistry, and Western blots. Results: Young Ossabaw pigs had elevated fasting blood glucose after feeding on a Western diet for 10 weeks. Their retina showed disrupted cellular architecture across neural layers, with numerous large vacuoles seen in cell bodies of the inner nuclear layer. Microvessels in the obese animals exhibited thickened basement membrane, along with pericyte ghosts and acellular capillaries. The pericyte to endothelial ratio decreased significantly. Retina flatmounts from obese pigs displayed reduced capillary density, numerous terminal capillary loops, and string vessels, which stained collagen IV but not isolectin IB4. Quantitative PCR and Western blots showed significantly high levels of basement membrane proteins collagen IV and fibronectin in obese pigs. Conclusions: This is the first study to describe the ultrastructural neuronal and vascular changes in the retina of young Ossabaw pigs fed a Western diet, simulating early signs of diabetic retinopathy pathogenesis.


Assuntos
Membrana Basal/ultraestrutura , Diabetes Mellitus Experimental , Retinopatia Diabética/diagnóstico , Dieta Ocidental/efeitos adversos , Retina/ultraestrutura , Animais , Retinopatia Diabética/etiologia , Feminino , Seguimentos , Masculino , Microscopia Eletrônica , Suínos , Porco Miniatura , Fatores de Tempo
20.
Behav Brain Res ; 347: 148-157, 2018 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-29526786

RESUMO

Explosive blast-induced mild traumatic brain injury (mTBI), a "signature wound" of recent military conflicts, commonly affects service members. While past blast injury studies have provided insights into TBI with moderate- to high-intensity explosions, the impact of primary low-intensity blast (LIB)-mediated pathobiology on neurological deficits requires further investigation. Our prior considerations of blast physics predicted ultrastructural injuries at nanoscale levels. Here, we provide quantitative data using a primary LIB injury murine model exposed to open field detonation of 350 g of high-energy explosive C4. We quantified ultrastructural and behavioral changes up to 30 days post blast injury (DPI). The use of an open-field experimental blast generated a primary blast wave with a peak overpressure of 6.76 PSI (46.6 kPa) at a 3-m distance from the center of the explosion, a positive phase duration of approximate 3.0 milliseconds (ms), a maximal impulse of 8.7 PSI × ms and a sharp rising time of 9 × 10-3 ms, with no apparent impact/acceleration in exposed animals. Neuropathologically, myelinated axonal damage was observed in blast-exposed groups at 7 DPI. Using transmission electron microscopy, we observed and quantified myelin sheath defects and mitochondrial abnormalities at 7 and 30 DPI. Inverse correlations between blast intensities and neurobehavioral outcomes including motor activities, anxiety levels, nesting behavior, spatial learning and memory occurred. These observations uncover unique ultrastructural brain abnormalities and associated behavioral changes due to primary blast injury and provide key insights into its pathogenesis and potential treatment.


Assuntos
Traumatismos por Explosões/patologia , Concussão Encefálica/etiologia , Concussão Encefálica/patologia , Encéfalo/ultraestrutura , Animais , Ansiedade/etiologia , Ansiedade/patologia , Traumatismos por Explosões/psicologia , Encéfalo/patologia , Concussão Encefálica/psicologia , Modelos Animais de Doenças , Método Duplo-Cego , Comportamento Exploratório , Imuno-Histoquímica , Masculino , Aprendizagem em Labirinto , Camundongos Endogâmicos C57BL , Microscopia Eletrônica de Transmissão , Mitocôndrias/ultraestrutura , Atividade Motora , Bainha de Mielina/ultraestrutura , Comportamento de Nidação , Distribuição Aleatória , Reconhecimento Psicológico , Reversão de Aprendizagem , Memória Espacial
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA