Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
1.
J Nucl Med ; 63(11): 1693-1700, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35332092

RESUMO

Clinical imaging performance using a fluorescent antibody was compared across 3 cancers to elucidate physical and biologic factors contributing to differential translation of epidermal growth factor receptor (EGFR) expression to macroscopic fluorescence in tumors. Methods: Thirty-one patients with high-grade glioma (HGG, n = 5), head-and-neck squamous cell carcinoma (HNSCC, n = 23), or lung adenocarcinoma (LAC, n = 3) were systemically infused with 50 mg of panitumumab-IRDye800 1-3 d before surgery. Intraoperative open-field fluorescent images of the surgical field were acquired, with imaging device settings and operating room lighting conditions being tested on tissue-mimicking phantoms. Fluorescence contrast and margin size were measured on resected specimen surfaces. Antibody distribution and EGFR immunoreactivity were characterized in macroscopic and microscopic histologic structures. The integrity of the blood-brain barrier was examined via tight junction protein (Claudin-5) expression with immunohistochemistry. Stepwise multivariate linear regression of biologic variables was performed to identify independent predictors of panitumumab-IRDye800 concentration in tissue. Results: Optimally acquired at the lowest gain for tumor detection with ambient light, intraoperative fluorescence imaging enhanced tissue-size dependent tumor contrast by 5.2-fold, 3.4-fold, and 1.4-fold in HGG, HNSCC, and LAC, respectively. Tissue surface fluorescence target-to-background ratio correlated with margin size and identified 78%-97% of at-risk resection margins ex vivo. In 4-µm-thick tissue sections, fluorescence detected tumor with 0.85-0.89 areas under the receiver-operating-characteristic curves. Preferential breakdown of blood-brain barrier in HGG improved tumor specificity of intratumoral antibody distribution relative to that of EGFR (96% vs. 80%) despite its reduced concentration (3.9 ng/mg of tissue) compared with HNSCC (8.1 ng/mg) and LAC (6.3 ng/mg). Cellular EGFR expression, tumor cell density, plasma antibody concentration, and delivery barrier were independently associated with local intratumoral panitumumab-IRDye800 concentration, with 0.62 goodness of fit of prediction. Conclusion: In multicancer clinical imaging of a receptor-ligand-based molecular probe, plasma antibody concentration, delivery barrier, and intratumoral EGFR expression driven by cellular biomarker expression and tumor cell density led to heterogeneous intratumoral antibody accumulation and spatial distribution whereas tumor size, resection margin, and intraoperative imaging settings substantially influenced macroscopic tumor contrast.


Assuntos
Neoplasias de Cabeça e Pescoço , Humanos , Carcinoma de Células Escamosas de Cabeça e Pescoço , Panitumumabe , Imagem Óptica/métodos , Receptores ErbB/metabolismo , Margens de Excisão , Linhagem Celular Tumoral
2.
NPJ Precis Oncol ; 5(1): 90, 2021 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-34625644

RESUMO

Non-small cell lung cancer (NSCLC) metastatic to the brain leptomeninges is rapidly fatal, cannot be biopsied, and cancer cells in the cerebrospinal fluid (CSF) are few; therefore, available tissue samples to develop effective treatments are severely limited. This study aimed to converge single-cell RNA-seq and cell-free RNA (cfRNA) analyses to both diagnose NSCLC leptomeningeal metastases (LM), and to use gene expression profiles to understand progression mechanisms of NSCLC in the brain leptomeninges. NSCLC patients with suspected LM underwent withdrawal of CSF via lumbar puncture. Four cytology-positive CSF samples underwent single-cell capture (n = 197 cells) by microfluidic chip. Using robust principal component analyses, NSCLC LM cell gene expression was compared to immune cells. Massively parallel qPCR (9216 simultaneous reactions) on human CSF cfRNA samples compared the relative gene expression of patients with NSCLC LM (n = 14) to non-tumor controls (n = 7). The NSCLC-associated gene, CEACAM6, underwent in vitro validation in NSCLC cell lines for involvement in pathologic behaviors characteristic of LM. NSCLC LM gene expression revealed by single-cell RNA-seq was also reflected in CSF cfRNA of cytology-positive patients. Tumor-associated cfRNA (e.g., CEACAM6, MUC1) was present in NSCLC LM patients' CSF, but not in controls (CEACAM6 detection sensitivity 88.24% and specificity 100%). Cell migration in NSCLC cell lines was directly proportional to CEACAM6 expression, suggesting a role in disease progression. NSCLC-associated cfRNA is detectable in the CSF of patients with LM, and corresponds to the gene expression profile of NSCLC LM cells. CEACAM6 contributes significantly to NSCLC migration, a hallmark of LM pathophysiology.

3.
Theranostics ; 11(15): 7130-7143, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34158840

RESUMO

Rationale: First-line therapy for high-grade gliomas (HGGs) includes maximal safe surgical resection. The extent of resection predicts overall survival, but current neuroimaging approaches lack tumor specificity. The epidermal growth factor receptor (EGFR) is a highly expressed HGG biomarker. We evaluated the safety and feasibility of an anti-EGFR antibody, panitumuab-IRDye800, at subtherapeutic doses as an imaging agent for HGG. Methods: Eleven patients with contrast-enhancing HGGs were systemically infused with panitumumab-IRDye800 at a low (50 mg) or high (100 mg) dose 1-5 days before surgery. Near-infrared fluorescence imaging was performed intraoperatively and ex vivo, to identify the optimal tumor-to-background ratio by comparing mean fluorescence intensities of tumor and histologically uninvolved tissue. Fluorescence was correlated with preoperative T1 contrast, tumor size, EGFR expression and other biomarkers. Results: No adverse events were attributed to panitumumab-IRDye800. Tumor fragments as small as 5 mg could be detected ex vivo and detection threshold was dose dependent. In tissue sections, panitumumab-IRDye800 was highly sensitive (95%) and specific (96%) for pathology confirmed tumor containing tissue. Cellular delivery of panitumumab-IRDye800 was correlated to EGFR overexpression and compromised blood-brain barrier in HGG, while normal brain tissue showed minimal fluorescence. Intraoperative fluorescence improved optical contrast in tumor tissue within and beyond the T1 contrast-enhancing margin, with contrast-to-noise ratios of 9.5 ± 2.1 and 3.6 ± 1.1, respectively. Conclusions: Panitumumab-IRDye800 provided excellent tumor contrast and was safe at both doses. Smaller fragments of tumor could be detected at the 100 mg dose and thus more suitable for intraoperative imaging.


Assuntos
Neoplasias Encefálicas , Sistemas de Liberação de Medicamentos , Glioma , Indóis/administração & dosagem , Proteínas de Neoplasias/metabolismo , Imagem Óptica , Panitumumabe/administração & dosagem , Adulto , Idoso , Neoplasias Encefálicas/diagnóstico por imagem , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/cirurgia , Intervalo Livre de Doença , Receptores ErbB/metabolismo , Feminino , Glioma/diagnóstico por imagem , Glioma/metabolismo , Glioma/cirurgia , Humanos , Cuidados Intraoperatórios , Masculino , Pessoa de Meia-Idade , Taxa de Sobrevida
4.
Clin Cancer Res ; 27(23): 6467-6478, 2021 12 01.
Artigo em Inglês | MEDLINE | ID: mdl-34475101

RESUMO

PURPOSE: Pyruvate kinase M2 (PKM2) catalyzes the final step in glycolysis, a key process of cancer metabolism. PKM2 is preferentially expressed by glioblastoma (GBM) cells with minimal expression in healthy brain. We describe the development, validation, and translation of a novel PET tracer to study PKM2 in GBM. We evaluated 1-((2-fluoro-6-[18F]fluorophenyl)sulfonyl)-4-((4-methoxyphenyl)sulfonyl)piperazine ([18F]DASA-23) in cell culture, mouse models of GBM, healthy human volunteers, and patients with GBM. EXPERIMENTAL DESIGN: [18F]DASA-23 was synthesized with a molar activity of 100.47 ± 29.58 GBq/µmol and radiochemical purity >95%. We performed initial testing of [18F]DASA-23 in GBM cell culture and human GBM xenografts implanted orthotopically into mice. Next, we produced [18F]DASA-23 under FDA oversight, and evaluated it in healthy volunteers and a pilot cohort of patients with glioma. RESULTS: In mouse imaging studies, [18F]DASA-23 clearly delineated the U87 GBM from surrounding healthy brain tissue and had a tumor-to-brain ratio of 3.6 ± 0.5. In human volunteers, [18F]DASA-23 crossed the intact blood-brain barrier and was rapidly cleared. In patients with GBM, [18F]DASA-23 successfully outlined tumors visible on contrast-enhanced MRI. The uptake of [18F]DASA-23 was markedly elevated in GBMs compared with normal brain, and it identified a metabolic nonresponder within 1 week of treatment initiation. CONCLUSIONS: We developed and translated [18F]DASA-23 as a new tracer that demonstrated the visualization of aberrantly expressed PKM2 for the first time in human subjects. These results warrant further clinical evaluation of [18F]DASA-23 to assess its utility for imaging therapy-induced normalization of aberrant cancer metabolism.


Assuntos
Neoplasias Encefálicas , Glioblastoma , Animais , Neoplasias Encefálicas/patologia , Compostos de Diazônio , Glioblastoma/patologia , Glicólise , Humanos , Camundongos , Tomografia por Emissão de Pósitrons/métodos , Piruvato Quinase/metabolismo , Ácidos Sulfanílicos
5.
J Clin Neurosci ; 80: 121-124, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33099333

RESUMO

While the majority of brain metastases arise from lung cancer, breast cancer, or melanoma, new treatments and improved prognoses have altered the profile of primary cancers that metastasize to the brain. We sought to determine the proportion of brain metastases from less common primary sites and conduct trend analyses. We reviewed the charts of 3585 patients with brain metastases seen at our institution from 2008 to 2018. We determined the primary site for each of these patients, and the Mann-Kendall test was used to evaluate temporal trends in the yearly proportion of brain metastases originating from each primary cancer. The five most common primary sites were lung (43.0%), breast (19.9%), melanoma (8.2%), renal (5.0%), and colorectal (3.8%). The proportion of yearly brain metastases originating from breast cancer (p = 0.029) and melanoma (p = 0.013) decreased by 23.8% and 46.7%, respectively, from 2008 (0.21 breast, 0.15 melanoma) to 2018 (0.16 breast, 0.08 melanoma), while no change was found in the proportion of brain metastases from lung, renal, and colorectal cancers. Brain metastases arising from rare primary sites, defined as those comprising at most 2% of all brain metastases, increased by 34.4% (p = 0.005). Limited sample size prohibited trend analysis of other individual primary sites. We report a decrease over 11 years in the proportion of brain metastases originating from breast cancer and melanoma at our institution, and an increase in brain metastases from rare primary sites. Further work with larger, multi-center databases will enable additional evaluation of brain metastases from rare primary sites.


Assuntos
Neoplasias Encefálicas/secundário , Oncologia/tendências , Neoplasias/patologia , Adulto , Feminino , Humanos , Pessoa de Meia-Idade , Centros de Atenção Terciária
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA