RESUMO
DNA methylation is a critical epigenetic regulator of development in mammals and social insects, but its significance in development outside these groups is not understood. Here we investigated the genome-wide dynamics of DNA methylation in a mollusc model, the oyster Crassostrea gigas, from the egg to the completion of organogenesis. Large-scale methylation maps reveal that the oyster genome displays a succession of methylated and non methylated regions, which persist throughout development. Differentially methylated regions (DMRs) are strongly regulated during cleavage and metamorphosis. The distribution and levels of methylated DNA within genomic features (exons, introns, promoters, repeats and transposons) show different developmental lansdscapes marked by a strong increase in the methylation of exons against introns after metamorphosis. Kinetics of methylation in gene-bodies correlate to their transcription regulation and to distinct functional gene clusters, and DMRs at cleavage and metamorphosis bear the genes functionally related to these steps, respectively. This study shows that DNA methylome dynamics underlie development through transcription regulation in the oyster, a lophotrochozoan species. To our knowledge, this is the first demonstration of such epigenetic regulation outside vertebrates and ecdysozoan models, bringing new insights into the evolution and the epigenetic regulation of developmental processes.
Assuntos
Metilação de DNA , Regulação da Expressão Gênica no Desenvolvimento , Ostreidae/genética , Animais , Genoma , Ostreidae/crescimento & desenvolvimentoRESUMO
Gelatinous zooplankton are a large component of the animal biomass in all marine environments, but are considered to be uncommon in the diet of most marine top predators. However, the diets of key predator groups like seabirds have conventionally been assessed from stomach content analyses, which cannot detect most gelatinous prey. As marine top predators are used to identify changes in the overall species composition of marine ecosystems, such biases in dietary assessment may impact our detection of important ecosystem regime shifts. We investigated albatross diet using DNA metabarcoding of scats to assess the prevalence of gelatinous zooplankton consumption by two albatross species, one of which is used as an indicator species for ecosystem monitoring. Black-browed and Campbell albatross scats were collected from eight breeding colonies covering the circumpolar range of these birds over two consecutive breeding seasons. Fish was the main dietary item at most sites; however, cnidarian DNA, primarily from scyphozoan jellyfish, was present in 42% of samples overall and up to 80% of samples at some sites. Jellyfish was detected during all breeding stages and consumed by adults and chicks. Trawl fishery catches of jellyfish near the Falkland Islands indicate a similar frequency of jellyfish occurrence in albatross diets in years of high and low jellyfish availability, suggesting jellyfish consumption may be selective rather than opportunistic. Warmer oceans and overfishing of finfish are predicted to favour jellyfish population increases, and we demonstrate here that dietary DNA metabarcoding enables measurements of the contribution of gelatinous zooplankton to the diet of marine predators.
Assuntos
Aves , Código de Barras de DNA Taxonômico , Cadeia Alimentar , Comportamento Predatório , Cifozoários/classificação , Animais , Ecossistema , Monitoramento Ambiental , Pesqueiros , Oceanos e Mares , Zooplâncton/classificaçãoRESUMO
Cephalopods are a relatively small class of molluscs (~800 species), but they support some large industrial scale fisheries and numerous small-scale, local, artisanal fisheries. For several decades, landings of cephalopods globally have grown against a background of total finfish landings levelling off and then declining. There is now evidence that in recent years, growth in cephalopod landings has declined. The commercially exploited cephalopod species are fast-growing, short-lived ecological opportunists. Annual variability in abundance is strongly influenced by environmental variability, but the underlying causes of the links between environment and population dynamics are poorly understood. Stock assessment models have recently been developed that incorporate environmental processes that drive variability in recruitment, distribution and migration patterns. These models can be expected to improve as more, and better, data are obtained on environmental effects and as techniques for stock identification improve. A key element of future progress will be improved understanding of trophic dynamics at all phases in the cephalopod life cycle. In the meantime, there is no routine stock assessment in many targeted fisheries or in the numerous by-catch fisheries for cephalopods. There is a particular need for a precautionary approach in these cases. Assessment in many fisheries is complicated because cephalopods are ecological opportunists and stocks appear to have benefited from the reduction of key predator by overexploitation. Because of the complexities involved, ecosystem-based fisheries management integrating social, economic and ecological considerations is desirable for cephalopod fisheries. An ecological approach to management is routine in many fisheries, but to be effective, good scientific understanding of the relationships between the environment, trophic dynamics and population dynamics is essential. Fisheries and the ecosystems they depend on can only be managed by regulating the activities of the fishing industry, and this requires understanding the dynamics of the stocks they exploit.
Assuntos
Cefalópodes/fisiologia , Pesqueiros , Animais , Ecossistema , Pesqueiros/economia , Dinâmica Populacional , Reprodução/fisiologiaRESUMO
Atlantic herring in International Council for Exploration of the Sea (ICES) Divisions 6.a, 7.b-c comprises at least three populations, distinguished by temporal and spatial differences in spawning, which have until recently been managed as two stocks defined by geographical delineators. Outside of spawning the populations form mixed aggregations, which are the subject of acoustic surveys. The inability to distinguish the populations has prevented the development of separate survey indices and separate stock assessments. A panel of 45 single-nucleotide polymorphisms, derived from whole-genome sequencing, were used to genotype 3480 baseline spawning samples (2014-2021). A temporally stable baseline comprising 2316 herring from populations known to inhabit Division 6.a was used to develop a genetic assignment method, with a self-assignment accuracy greater than 90%. The long-term temporal stability of the assignment model was validated by assigning archive (2003-2004) baseline samples (270 individuals) with a high level of accuracy. Assignment of non-baseline samples (1514 individuals) from Divisions 6.a, 7.b-c indicated previously unrecognized levels of mixing of populations outside of the spawning season. The genetic markers and assignment models presented constitute a 'toolbox' that can be used for the assignment of herring caught in mixed survey and commercial catches in Division 6.a into their population of origin with a high level of accuracy.
RESUMO
Conjugated systems based on phospholes and 1,1'-biphospholes bearing 3,4-ethylenedithia bridges have been prepared using the Fagan-Nugent route. The mechanism of this organometallic route leading to intermediate zirconacyclopentadienes has been investigated by using theoretical calculations. This study revealed that the oxidative coupling leading to zirconacyclopentadienes is favored over oxidative addition within the S-C≡C bond both thermodynamically and kinetically. The impact of the presence of the S atoms on the optical and electrochemical behavior of the phospholes and 1,1'-biphospholes has been systematically evaluated both experimentally and theoretically. A comparison with their "all-carbon" analogues is provided. Of particular interest, this comparative study revealed that the introduction of S atoms has an impact on the electronic properties of phosphole-based conjugated systems. A decrease of the HOMO-LUMO separation and a stabilization of the LUMO level were observed. These general trends are also observed with 1,1'-biphospholes exhibiting σ-π conjugation. The P atom of the 3,4-ethylenedithiaphospholes can be selectively oxidized by S(8) or O(2). These P modifications result in a lowering of the HOMO-LUMO separation as well as an increase of the reduction and oxidation potentials. The S atoms of the 3,4-ethylenedithia bridge of the 2,5-phosphole have been oxidized using m-chloroperoxybenzoic acid. The resulting 3,4-ethylenesulfoxide oxophosphole was characterized by an X-ray diffraction study. Experimental and theoretical studies show that this novel chemical manipulation results in an increase of the HOMO-LUMO separation and an important decrease of the LUMO level. The electropolymerization of 2-thienyl-capped 3,4-ethylenedithiathioxophosphole and 1,1'-biphosphole is reported. The impact of the S substituents on the polymer properties is discussed.
RESUMO
New cationic diruthenium complexes of the type [(arene)(2)Ru(2)(SPh)(3)](+), arene being C(6)H(6), p-(i)PrC(6)H(4)Me, C(6)Me(6), C(6)H(5)R, where R = (CH(2))(n)OC(O)C(6)H(4)-p-O(CH(2))(6)CH(3) or (CH(2))(n)OC(O)CH=CHC(6)H(4)-p-OCH(3) and n = 2 or 4, are obtained from the reaction of the corresponding precursor [(arene)RuCl(2)](2) and thiophenol and isolated as their chloride salts. The complexes have been fully characterised by spectroscopic methods and the solid state structure of [(C(6)H(6))(2)Ru(2)(SPh)(3)](+), crystallised as the hexafluorophosphate salt, has been established by single crystal X-ray diffraction. The complexes are highly cytotoxic against human ovarian cancer cells (cell lines A2780 and A2780cisR), with the IC(50) values being in the submicromolar range. In comparison the analogous trishydroxythiophenolato compounds [(arene)(2)Ru(2)(S-p-C(6)H(4)OH)(3)]Cl (IC(50) values around 100 µM) are much less cytotoxic. Thus, it would appear that the increased antiproliferative effect of the arene ruthenium complexes is due to the presence of the phenyl or toluyl substituents at the three thiolato bridges.