Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Nanotechnology ; 30(30): 305101, 2019 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-30959494

RESUMO

Bimetallic alloyed silver-platinum nanoparticles (AgPt NP) with different metal composition from Ag10Pt90 to Ag90Pt10 in steps of 20 mol% were synthesized. The biological effects of AgPt NP, including cellular uptake, cell viability, osteogenic differentiation and osteoclastogenesis as well as the antimicrobial activity towards Staphylococcus aureus and Escherichia coli were analyzed in comparison to pure Ag NP and pure Pt NP. The uptake of NP into human mesenchymal stem cells was confirmed by cross-sectional focused-ion beam preparation and observation by scanning and transmission electron microscopy in combination with energy-dispersive x-ray analysis. Lower cytotoxicity and antimicrobial activity were observed for AgPt NP compared to pure Ag NP. Thus, an enhanced Ag ion release due to a possible sacrificial anode effect was not achieved. Nevertheless, a Ag content of at least 50 mol% was sufficient to induce bactericidal effects against both Staphylococcus aureus and Escherichia coli. In addition, a Pt-related (≥50 mol% Pt) osteo-promotive activity on human mesenchymal stem cells was observed by enhanced cell calcification and alkaline phosphatase activity. In contrast, the osteoclastogenesis of rat primary precursor osteoclasts was inhibited. In summary, these results demonstrate a combinatory osteo-promotive and antimicrobial activity of bimetallic Ag50Pt50 NP.


Assuntos
Antibacterianos/farmacologia , Nanopartículas Metálicas , Osteogênese/efeitos dos fármacos , Platina/farmacologia , Prata/farmacologia , Antibacterianos/química , Diferenciação Celular/efeitos dos fármacos , Linhagem Celular , Escherichia coli/efeitos dos fármacos , Infecções por Escherichia coli/tratamento farmacológico , Humanos , Células-Tronco Mesenquimais/citologia , Células-Tronco Mesenquimais/efeitos dos fármacos , Nanopartículas Metálicas/química , Platina/química , Prata/química , Infecções Estafilocócicas/tratamento farmacológico , Staphylococcus aureus/efeitos dos fármacos
2.
Chemistry ; 24(36): 9051-9060, 2018 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-29522654

RESUMO

Spherical bimetallic AgAu nanoparticles in the molar ratios 30:70, 50:50, and 70:30 with diameters of 30 to 40 nm were analyzed together with pure silver and gold nanoparticles of the same size. Dynamic light scattering (DLS) and differential centrifugal sedimentation (DCS) were used for size determination. Cyclic voltammetry (CV) was used to determine the nanoalloy composition, together with atomic absorption spectroscopy (AAS), energy-dispersive X-ray spectroscopy (EDX) and ultraviolet-visible (UV/Vis) spectroscopy. Underpotential deposition (UPD) of lead (Pb) on the particle surface gave information about its spatial elemental distribution and surface area. Scanning electron microscopy (SEM), transmission electron microscopy (TEM), and atomic force microscopy (AFM) were applied to study the shape and the size of the nanoparticles. X-ray powder diffraction gave the crystallite size and the microstrain. The particles form a solid solution (alloy) with an enrichment of silver on the nanoparticle surface, including some silver-rich patches. UPD indicated that the surface only consists of silver atoms.

3.
Inorg Chem ; 56(12): 6920-6932, 2017 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581732

RESUMO

Nanosized SrSnO3 photocatalysts have been successfully synthesized by microwave synthesis in various ionic liquids (ILs) followed by a heat treatment process to optimize the materials' crystallinity. The influence of the ILs with various cations such as 1-butyl-3-methylimidazolium ([C4mim]+), 6-bis(3-methylimidazolium-1-yl)hexane ([C6(mim)2]2+), butylpyridinium ([C4Py]+), and tetradecyltrihexylphosphonium ([P66614]+) and bis(trifluoromethanesulfonyl)amide ([Tf2N]-) as the anion on the structure, crystallization, and morphology of the products was investigated. The samples were characterized by X-ray diffraction (XRD), thermogravimetry (TG), scanning electron microscopy (SEM), surface area analysis by gas adsorption, X-ray photoelectron spectroscopy (XPS), diffuse reflectance UV-vis spectroscopy, and Raman and IR spectroscopy. According to structure characterization by XRD and Raman spectroscopy all samples crystallized phase-pure in the orthorhombic GdFeO3 perovskite structure type. SEM reveals that, on the basis of the IL, the obtained SrSnO3 nanoparticles exhibit different morphologies and sizes. Rod-shaped particles are formed in [C4mim][Tf2N], [C6(mim)2][Tf2N]2, and [P66614][Tf2N]. However, the particle dimensions and size distribution vary depending on the IL and range from quite thin and long needlelike particles with a narrow size distribution obtained in [P66614][Tf2N] to relatively larger particles with a broader size distribution obtained in [C6(mim)2][Tf2N]2. In contrast, in [C4Py][Tf2N] nanospheres with a diameter of about 50 nm form. For these particles the highest photocatalytic activity was observed. Our investigations indicate that the improved photocatalytic activity of this material results from the synergistic effect of the relatively large surface area associated with nanosize and an appropriate energy band structure.

4.
Faraday Discuss ; 193: 327-338, 2016 12 12.
Artigo em Inglês | MEDLINE | ID: mdl-27711862

RESUMO

The increasing interest in producing bimetallic nanoparticles and utilizing them in modern technologies sets the demand for fast and affordable characterization of these materials. To date Scanning Transmission Electron Microscopy (STEM) coupled to energy dispersive X-ray spectroscopy is usually used to determine the size and composition of alloy nanoparticles, which is time-consuming and expensive. Here electrochemical single nanoparticle analysis is presented as an alternative approach to infer the particle size and composition of alloy nanoparticles, directly in a dispersion of these particles. As a proof of concept, 14 nm sized Ag0.73Au0.27 alloy nanoparticles are analyzed using a combination of chronoamperometric single nanoparticle analysis and cyclic voltammetry ensemble studies. It is demonstrated that the size, the alloying and the composition can all be inferred using this approach. Thus, the electrochemical characterization of single bimetallic alloy nanoparticles is suggested here as a powerful and convenient complement or alternative to TEM characterization of alloy nanoparticles.

5.
Nanoscale Adv ; 2(1): 225-238, 2020 Jan 22.
Artigo em Inglês | MEDLINE | ID: mdl-36133991

RESUMO

We present a study on the formation of silver (Ag) and bimetallic silver-gold (AgAu) nanoparticles monitored by in situ SAXS as well as by ex situ TEM, XRD and UV-vis analysis in a flow reactor at controlled reaction temperature. The formation mechanism of the nanoparticles is derived from the structural parameters obtained from the experimental data. The evolution of the average particle size of pure and alloyed nanoparticles shows that the particle growth occurs initially by a coalescence mechanism. The later growth of pure silver nanoparticles is well described by Ostwald ripening and for the alloyed nanoparticles by a process with a significantly slower growth rate. Additionally, the SAXS data of pure silver nanoparticles revealed two major populations of nanoparticles, the first one with a continuous crystal growth to a saturation plateau, and the second one probably with a continuous emergence of small new crystals. The particle sizes obtained by SAXS agree well with the results from transmission electron microscopy and X-ray diffraction. The present study demonstrates the capability of an in situ investigation of synthesis processes using a laboratory based SAXS instrument. Online monitoring of the synthesis permitted a detailed investigation of the structural evolution of the system.

6.
RSC Adv ; 8(67): 38582-38590, 2018 Nov 14.
Artigo em Inglês | MEDLINE | ID: mdl-35559054

RESUMO

Bimetallic nanoparticles consisting of silver and platinum were prepared by a modified seeded-growth process in water in the full composition range in steps of 10 mol%. The particles had diameters between 15-25 nm as determined by disc centrifugal sedimentation (DCS) and transmission electron microscopy (TEM). Whereas particles with high platinum content were mostly spherical with a solid silver core/platinum shell structure, mostly hollow alloyed nanoparticles were observed with increasing silver content. The internal structure and the elemental distribution within the particles were elucidated by high-resolution transmission electron microscopy (HRTEM) in combination with energy-dispersive X-ray spectroscopy (EDX). The particles were cytotoxic for human mesenchymal stem cells (hMSC) above 50 mol% silver. This was explained by dissolution experiments where silver was only released at and above 50 mol% silver. In contrast, platinum-rich particles (less than 50 mol% silver) did not release any silver ions. This indicates that the presence of platinum inhibits the oxidative dissolution of silver.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA