Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 109
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell ; 182(4): 960-975.e15, 2020 08 20.
Artigo em Inglês | MEDLINE | ID: mdl-32763155

RESUMO

Parental behavior is pervasive throughout the animal kingdom and essential for species survival. However, the relative contribution of the father to offspring care differs markedly across animals, even between related species. The mechanisms that organize and control paternal behavior remain poorly understood. Using Sprague-Dawley rats and C57BL/6 mice, two species at opposite ends of the paternal spectrum, we identified that distinct electrical oscillation patterns in neuroendocrine dopamine neurons link to a chain of low dopamine release, high circulating prolactin, prolactin receptor-dependent activation of medial preoptic area galanin neurons, and paternal care behavior in male mice. In rats, the same parameters exhibit inverse profiles. Optogenetic manipulation of these rhythms in mice dramatically shifted serum prolactin and paternal behavior, whereas injecting prolactin into non-paternal rat sires triggered expression of parental care. These findings identify a frequency-tuned brain-endocrine-brain circuit that can act as a gain control system determining a species' parental strategy.


Assuntos
Dopamina/metabolismo , Hipotálamo/fisiologia , Neurônios/fisiologia , Comportamento Paterno/fisiologia , Animais , Encéfalo/fisiologia , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Optogenética , Técnicas de Patch-Clamp , Prolactina/sangue , Ratos , Ratos Sprague-Dawley , Receptores da Prolactina/deficiência , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
2.
J Neurosci ; 44(14)2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38395612

RESUMO

ß-Catenin is a bifunctional molecule that is an effector of the wingless-related integration site (Wnt) signaling to control gene expression and contributes to the regulation of cytoskeleton and neurotransmitter vesicle trafficking. In its former role, ß-catenin binds transcription factor 7-like 2 (TCF7L2), which shows strong genetic associations with the pathogenesis of obesity and type-2 diabetes. Here, we sought to determine whether ß-catenin plays a role in the neuroendocrine regulation of body weight and glucose homeostasis. Bilateral injections of adeno-associated virus type-2 (AAV2)-mCherry-Cre were placed into the arcuate nucleus of adult male and female ß-catenin flox mice, to specifically delete ß-catenin expression in the mediobasal hypothalamus (MBH-ß-cat KO). Metabolic parameters were then monitored under conditions of low-fat (LFD) and high-fat diet (HFD). On LFD, MBH-ß-cat KO mice showed minimal metabolic disturbances, but on HFD, despite having only a small difference in weekly caloric intake, the MBH-ß-cat KO mice were significantly heavier than the control mice in both sexes (p < 0.05). This deficit seemed to be due to a failure to show an adaptive increase in energy expenditure seen in controls, which served to offset the increased calories by HFD. Both male and female MBH-ß-cat KO mice were highly glucose intolerant when on HFD and displayed a significant reduction in both leptin and insulin sensitivity compared with controls. This study highlights a critical role for ß-catenin in the hypothalamic circuits regulating body weight and glucose homeostasis and reveals potential mechanisms by which genetic variation in this pathway could impact on development of metabolic disease.


Assuntos
Diabetes Mellitus Tipo 2 , Dieta Hiperlipídica , Animais , Feminino , Masculino , Camundongos , beta Catenina/genética , beta Catenina/metabolismo , Peso Corporal/genética , Diabetes Mellitus Tipo 2/patologia , Dieta Hiperlipídica/efeitos adversos , Metabolismo Energético/genética , Glucose/metabolismo , Hipotálamo/metabolismo , Leptina/metabolismo , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/genética , Obesidade/metabolismo
3.
Proc Natl Acad Sci U S A ; 119(6)2022 02 08.
Artigo em Inglês | MEDLINE | ID: mdl-35131854

RESUMO

Aggressive behavior is rarely observed in virgin female mice but is specifically triggered in lactation where it facilitates protection of offspring. Recent studies demonstrated that the hypothalamic ventromedial nucleus (VMN) plays an important role in facilitating aggressive behavior in both sexes. Here, we demonstrate a role for the pituitary hormone, prolactin, acting through the prolactin receptor in the VMN to control the intensity of aggressive behavior exclusively during lactation. Prolactin receptor deletion from glutamatergic neurons or specifically from the VMN resulted in hyperaggressive lactating females, with a marked shift from intruder-directed investigative behavior to very high levels of aggressive behavior. Prolactin-sensitive neurons in the VMN project to a wide range of other hypothalamic and extrahypothalamic regions, including the medial preoptic area, paraventricular nucleus, and bed nucleus of the stria terminalis, all regions known to be part of a complex neuronal network controlling maternal behavior. Within this network, prolactin acts in the VMN to specifically restrain male-directed aggressive behavior in lactating females. This action in the VMN may complement the role of prolactin in other brain regions, by shifting the balance of maternal behaviors from defense-related activities to more pup-directed behaviors necessary for nurturing offspring.


Assuntos
Agressão/fisiologia , Lactação/metabolismo , Prolactina/metabolismo , Animais , Feminino , Hipotálamo/metabolismo , Masculino , Comportamento Materno/fisiologia , Camundongos , Camundongos Endogâmicos C57BL , Neurônios/metabolismo , Núcleo Hipotalâmico Paraventricular/metabolismo , Área Pré-Óptica/metabolismo , Receptores da Prolactina/metabolismo , Tálamo/metabolismo , Núcleo Hipotalâmico Ventromedial/metabolismo
4.
J Neurosci ; 42(44): 8308-8327, 2022 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-36163141

RESUMO

Parental care is critical for successful reproduction in mammals. Recent work has implicated the hormone prolactin in regulating male parental behavior, similar to its established role in females. Male laboratory mice show a mating-induced suppression of infanticide (normally observed in virgins) and onset of paternal behavior 2 weeks after mating. Using this model, we sought to investigate how prolactin acts in the forebrain to regulate paternal behavior. First, using c-fos immunoreactivity in prolactin receptor (Prlr) Prlr-IRES-Cre-tdtomato reporter mouse sires, we show that the circuitry activated during paternal interactions contains prolactin-responsive neurons in multiple sites, including the medial preoptic nucleus, bed nucleus of the stria terminalis, and medial amygdala. Next, we deleted Prlr from three prominent cell types found in these regions: glutamatergic, GABAergic, and CaMKIIα. Prlr deletion from CaMKIIα, but not glutamatergic or GABAergic cells, had a profound effect on paternal behavior as none of these KO males completed the pup-retrieval task. Prolactin was increased during mating, but not in response to pups, suggesting that the mating-induced secretion of prolactin is important for establishing the switch from infanticidal to paternal behavior. Pharmacological blockade of prolactin secretion at mating, however, had no effect on paternal behavior. In contrast, suppressing prolactin secretion at the time of pup exposure resulted in failure to retrieve pups, with exogenous prolactin administration rescuing this behavior. Together, our data show that paternal behavior in sires is dependent on basal levels of circulating prolactin acting at the time of interaction with pups, mediated through Prlr on CaMKIIα-expressing neurons.SIGNIFICANCE STATEMENT Parental care is critical for offspring survival. Compared with maternal care, however, the neurobiology of paternal care is less well understood. Here we show that the hormone prolactin, which is most well known for its female-specific role in lactation, has a role in the male brain to promote paternal behavior. In the absence of prolactin signaling specifically during interactions with pups, father mice fail to show normal retrieval behavior of pups. These data demonstrate that prolactin has a similar action in both males and females to promote parental care.


Assuntos
Comportamento Paterno , Prolactina , Animais , Feminino , Masculino , Camundongos , Encéfalo/fisiologia , Comportamento Materno , Comportamento Paterno/fisiologia , Área Pré-Óptica/fisiologia , Prolactina/metabolismo , Receptores da Prolactina/genética , Receptores da Prolactina/metabolismo
5.
FASEB J ; 36(3): e22207, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35188286

RESUMO

Leptin is best known for its role in adipostasis, but it also regulates blood glucose levels. The molecular mechanism by which leptin controls glucose homeostasis remains largely unknown. Here, we use a zebrafish model to show that Wnt signaling mediates the glucoregulatory effects of leptin. Under normal feeding conditions, leptin regulates glucose homeostasis but not adipostasis in zebrafish. In times of nutrient excess, however, we found that leptin also regulates body weight and size. Using a Wnt signaling reporter fish, we show that leptin activates the canonical Wnt pathway in vivo. Utilizing two paradigms for hyperglycemia, it is revealed that leptin regulates glucose homeostasis via the Wnt pathway, as pharmacological inhibition of this pathway impairs the glucoregulatory actions of leptin. Our results may shed new light on the evolution of the physiological function of leptin.


Assuntos
Glucose/metabolismo , Hiperglicemia/metabolismo , Leptina/metabolismo , Via de Sinalização Wnt , Animais , Homeostase , Leptina/genética , Receptores para Leptina/genética , Receptores para Leptina/metabolismo , Peixe-Zebra , Proteínas de Peixe-Zebra/genética , Proteínas de Peixe-Zebra/metabolismo
6.
Proc Natl Acad Sci U S A ; 117(27): 15748-15754, 2020 07 07.
Artigo em Inglês | MEDLINE | ID: mdl-32571943

RESUMO

Trade-offs between growth, reproduction, and lifespan constrain animal life histories, leading to evolutionary diversification of life history cycles in different environments. In female mammals, gestation and lactation are expected to impose the major costs of reproduction, driving reproductive trade-offs, although mating also requires interactions with males that could themselves influence life history. Here we show that a male's presence by itself leads to lifelong alterations in life history in female mice. Housing C57BL/6J female mice with sterilized males early in life led to an increase in body weight, an effect that persisted across life even when females were later allowed to produce pups. We found that those females previously housed with sterile males also showed enhanced late-life offspring production when allowed to reproduce, indicating that earlier mating can influence subsequent fecundity. This effect was the opposite to that seen in females previously housed with intact males, which showed the expected trade-off between early-life and late-life reproduction. However, housing with a sterile male early in life came at a cost to lifespan, which was observed in the absence of females ever undergoing fertilization. Endocrinologically, mating also permanently reduced the concentration of circulating prolactin, a pituitary hormone influencing maternal care. Changes in hormone axes that influence reproduction could therefore help alter life history allocation in response to opposite-sex stimuli. Our results demonstrate that mating itself can increase growth and subsequent fecundity in mammals, and that responses to sexual stimuli could account for some lifespan trade-offs normally attributed to pregnancy and lactation.


Assuntos
Evolução Biológica , Fertilidade/fisiologia , Longevidade/fisiologia , Reprodução/fisiologia , Animais , Fenômenos Biológicos , Peso Corporal/genética , Peso Corporal/fisiologia , Comunicação Celular , Feminino , Fertilidade/genética , Infertilidade Masculina/genética , Lactação , Longevidade/genética , Masculino , Camundongos , Reprodução/genética , Comportamento Sexual Animal/fisiologia
7.
J Neurosci ; 40(37): 7080-7090, 2020 09 09.
Artigo em Inglês | MEDLINE | ID: mdl-32801151

RESUMO

Many clinical and preclinical studies report higher prevalence and severity of chronic pain in females. We used hyperalgesic priming with interleukin 6 (IL-6) priming and PGE2 as a second stimulus as a model for pain chronicity. Intraplantar IL-6 induced hypersensitivity was similar in magnitude and duration in both males and females, while both paw and intrathecal PGE2 hypersensitivity was more persistent in females. This difference in PGE2 response was dependent on both circulating estrogen and translation regulation signaling in the spinal cord. In males, the duration of hypersensitivity was regulated by testosterone. Since the prolactin receptor (Prlr) is regulated by reproductive hormones and is female-selectively activated in sensory neurons, we evaluated whether Prlr signaling contributes to hyperalgesic priming. Using ΔPRL, a competitive Prlr antagonist, and a mouse line with ablated Prlr in the Nav1.8 sensory neuronal population, we show that Prlr in sensory neurons is necessary for the development of hyperalgesic priming in female, but not male, mice. Overall, sex-specific mechanisms in the initiation and maintenance of chronic pain are regulated by the neuroendocrine system and, specifically, sensory neuronal Prlr signaling.SIGNIFICANCE STATEMENT Females are more likely to experience chronic pain than males, but the mechanisms that underlie this sex difference are not completely understood. Here, we demonstrate that the duration of mechanical hypersensitivity is dependent on circulating sex hormones in mice, where estrogen caused an extension of sensitivity and testosterone was responsible for a decrease in the duration of the hyperalgesic priming model of chronic pain. Additionally, we demonstrated that prolactin receptor expression in Nav1.8+ neurons was necessary for hyperalgesic priming in female, but not male, mice. Our work demonstrates a female-specific mechanism for the promotion of chronic pain involving the neuroendrocrine system and mediated by sensory neuronal prolactin receptor.


Assuntos
Hiperalgesia/metabolismo , Neurossecreção , Receptores da Prolactina/metabolismo , Células Receptoras Sensoriais/metabolismo , Caracteres Sexuais , Animais , Dinoprostona/metabolismo , Estrogênios/sangue , Feminino , Humanos , Hiperalgesia/fisiopatologia , Interleucina-6/metabolismo , Masculino , Camundongos , Canal de Sódio Disparado por Voltagem NAV1.8/metabolismo , Nociceptividade , Receptores da Prolactina/genética , Células Receptoras Sensoriais/fisiologia , Medula Espinal/citologia , Medula Espinal/metabolismo , Medula Espinal/fisiopatologia
8.
FASEB J ; 34(3): 3902-3914, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31944423

RESUMO

To study the pathological effects of continuous hyperprolactinemia on food intake mechanisms we used female mice that lack dopamine D2 receptors in lactotropes (lacDrd2KO). These mice had lifelong hyperprolactinemia, increased food intake, and gradual development of obesity from 5 to 10 months of age. Ongoing endogenous prolactin signaling in lacDrd2KO mice was evidenced by increased basal phosphorylation of STAT5b in hypothalamic areas related to food intake, such as the arcuate (ARN), dorsomedial (DMN), and ventromedial nuclei. In the ARN of young lacDrd2KO mice there were higher Prlr mRNA levels and in obese 10-month-old lacDrd2KO mice increased expression of the orexigenic genes Neuropeptide Y (Npy) and Agouti-related peptide, compared to controls. Furthermore, Npy expression was increased in the DMN, probably contributing to increased food intake and decreased expression of Uncoupling protein-1 in brown adipose tissue, both events favoring weight gain. Leptin resistance in obese lacD2RKO mice was evidenced by its failure to lower food intake and a dampened response of STAT3 phosphorylation, specifically in the mediobasal hypothalamus. Our results suggest that pathological chronically high prolactin levels, as found in psychiatric treatments or patients with prolactinomas, may impact on specific hypothalamic nuclei altering gene expression, leptin response, and food intake.


Assuntos
Núcleo Arqueado do Hipotálamo/efeitos dos fármacos , Núcleo Arqueado do Hipotálamo/metabolismo , Ingestão de Alimentos/efeitos dos fármacos , Prolactina/farmacologia , Animais , Glicemia/efeitos dos fármacos , Ensaio de Imunoadsorção Enzimática , Imuno-Histoquímica , Insulina/sangue , Camundongos , Camundongos Knockout , Reação em Cadeia da Polimerase em Tempo Real , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
9.
Horm Behav ; 135: 105041, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34385119

RESUMO

The survival of newborn offspring in mammals is dependent on sustained maternal care. Mammalian mothers are highly motivated to interact with and care for offspring, however, it is unclear how hormonal signals act on neural circuitry to promote maternal motivation during the transition to motherhood. In this study we aimed to establish methods that enable us to evaluate change in maternal motivation across the reproductive life cycle in female mice. Using two behavioural testing paradigms; a novel T-maze retrieval test and a barrier climbing test, we found that pup retrieval behaviour was low in virgin and pregnant mice compared to lactating females, indicating that maternal motivation arises around the time of parturition. Furthermore, in reproductively experienced females, maternal motivation declined over time after weaning of pups. As we have previously shown that lactogenic action mediated through the prolactin receptor (Prlr) in the medial preoptic area (MPOA) is essential for the expression of maternal behaviour, we aimed to investigate the role of lactogenic hormones in promoting pup-related motivational behaviours. With GABAergic neurons expressing Prlr in multiple brain regions important for maternal behaviour, we conditionally deleted Prlr from GABA neurons. Compared to control females, lactating GABA neuron-specific Prlr knockout mice showed slower and incomplete pup retrieval behaviour in the T-maze test. Testing of anxiety behaviour on an elevated plus maze indicated that these mice did not have increased anxiety levels, suggesting that lactogenic action on GABA neurons is necessary for the full expression of motivational aspects of maternal behaviour during lactation.


Assuntos
Prolactina , Receptores da Prolactina , Animais , Feminino , Neurônios GABAérgicos , Humanos , Lactação , Comportamento Materno , Camundongos , Motivação , Gravidez
10.
FASEB J ; 33(5): 6115-6128, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30735445

RESUMO

There is clear evidence for carrier-mediated transport of prolactin into the brain, and it has been widely assumed that prolactin receptors (PRLRs) in the choroid plexus (ChP) might mediate this transport. Using PRLR knockout mice, we recently showed that PRLRs in ChP are not required for prolactin transport into the brain. Hence, the function of PRLR in the ChP remains unknown. PRLR expression is increased in the ChP during lactation, suggesting a possible role in adaptive function of prolactin at this time. To gain insight into prolactin function in the ChP, we have utilized RNA sequencing and NanoString techniques to characterize transcriptional changes in response to differing levels of prolactin at diestrus, during pregnancy, and in lactation. We have observed opposing transcriptional effects of prolactin on the ChP in different physiologic states, being primarily inhibitory during diestrus but stimulatory in lactation. Insulin-like growth factor 2 (Igf2), a highly expressing transcript found in the ChP, showed a 6-fold increase at lactation that returned to baseline on suppression of prolactin levels. These results indicate that Igf2 may be an important downstream mediator of prolactin-induced signaling in the ChP.-Phillipps, H. R., Rand, C. J., Brown, R. S. E., Kokay, I. C., Stanton, J.-A., Grattan, D. R. Prolactin regulation of insulin-like growth factor 2 gene expression in the adult mouse choroid plexus.


Assuntos
Encéfalo/metabolismo , Fator de Crescimento Insulin-Like II/genética , Lactação/metabolismo , Prolactina/metabolismo , Animais , Estro/metabolismo , Feminino , Fator de Crescimento Insulin-Like II/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Gravidez/metabolismo , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Receptores da Prolactina/metabolismo
11.
Proc Natl Acad Sci U S A ; 114(40): 10779-10784, 2017 10 03.
Artigo em Inglês | MEDLINE | ID: mdl-28923971

RESUMO

Pregnancy hormones, such as prolactin, sensitize neural circuits controlling parental interactions to induce timely activation of maternal behaviors immediately after parturition. While the medial preoptic area (MPOA) is known to be critical for maternal behavior, the specific role of prolactin in this brain region has remained elusive. Here, we evaluated the role of prolactin action in the MPOA using complementary genetic strategies in mice. We characterized prolactin-responsive neurons within the MPOA at different hormonal stages and delineated their projections in the brain. We found that MPOA neurons expressing prolactin receptors (Prlr) form the nexus of a complex prolactin-responsive neural circuit, indicating that changing prolactin levels can act at multiple sites and thus, impinge on the overall activity of a distributed network of neurons. Conditional KO of Prlr from neuronal subpopulations expressing the neurotransmitters GABA or glutamate within this circuit markedly reduced the capacity for prolactin action both in the MPOA and throughout the network. Each of these manipulations, however, produced only subtle impacts on maternal care, suggesting that this distributed circuit is robust with respect to alterations in prolactin signaling. In contrast, acute deletion of Prlr in all MPOA neurons of adult female mice resulted in profound deficits in maternal care soon after birth. All mothers abandoned their pups, showing that prolactin action on MPOA neurons is necessary for the normal expression of postpartum maternal behavior in mice. Our data establish a critical role for prolactin-induced behavioral responses in the maternal brain, ensuring survival of mammalian offspring.


Assuntos
Comportamento Animal/fisiologia , Lactação , Comportamento Materno/fisiologia , Mães/psicologia , Área Pré-Óptica/fisiologia , Prolactina/metabolismo , Receptores da Prolactina/fisiologia , Animais , Feminino , Camundongos Knockout , Período Pós-Parto , Gravidez
12.
J Immunol ; 198(1): 270-278, 2017 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-27881706

RESUMO

The IL-1 families of ligands and receptors exhibit similarity of coding sequences, protein structures, and chromosomal positions, suggesting that they have arisen via duplication of ancestral genes. Within these families there is selectivity in ligand-receptor interactions as well as promiscuity. IL-18 and its receptor are members of these families. IL-18 is recognized as binding to the protein products of the IL18R1 and IL18RAP genes, and with high affinity to a separate IL-18 binding protein (IL-18BP). However, IL-18BP is anomalous, as it exhibits little resemblance to IL-18R proteins. Additionally, IL-18 is produced in the brain in medial habenula neurons, which project IL-18-containing axons to the interpeduncular nucleus. However, there is a lack of focal IL-18R expression in their terminal field. Given these anomalies, we hypothesized that another receptor for IL-18 may exist, and that IL18BP is evolutionarily related to this receptor. We examined Ensembl and National Center for Biotechnology Information databases to identify available IL18BP records (n = 86 species) and show through bioinformatics approaches that across mammalian species with IL18BP genes, IL-18BP is consistently most similar to IL-1R9 (IL-1R accessory protein-like 2), another member of the IL-1R family. IL-1R9 and the related IL-1R8, but not other IL-1R family members, exhibit an amino acid sequence similar to binding site A of human and viral IL-18BPs. Conserved intron/exon boundaries, protein structure, and key binding site amino acids suggest that IL18BP and IL1R9 are evolutionarily related, and that IL-1R9 and IL-1R8 may bind IL-18.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Receptores de Interleucina-18/genética , Receptores de Interleucina-1/genética , Sequência de Aminoácidos , Animais , Sequência de Bases , Biologia Computacional , Evolução Molecular , Humanos , Homologia de Sequência
13.
J Neurosci ; 36(27): 7142-53, 2016 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-27383590

RESUMO

UNLABELLED: The cellular processes that cause high caloric diet (HCD)-induced infertility are poorly understood but may involve upregulation of suppressor of cytokine signaling (SOCS-3) proteins that are associated with hypothalamic leptin resistance. Deletion of SOCS-3 from brain cells is known to protect mice from diet-induced obesity, but the effects on HCD-induced infertility are unknown. We used neuron-specific SOCS3 knock-out mice to elucidate this and the effects on regional hypothalamic leptin resistance. As expected, male and female neuron-specific SOCS3 knock-out mice were protected from HCD-induced obesity. While female wild-type mice became infertile after 4 months of HCD feeding, infertility onset in knock-out females was delayed by 4 weeks. Similarly, knock-out mice had delayed leptin resistance development in the medial preoptic area and anteroventral periventricular nucleus, regions important for generation of the surge of GnRH and LH that induces ovulation. We therefore tested whether the suppressive effects of HCD on the estradiol-induced GnRH/LH surge were overcome by neuron-specific SOCS3 knock-out. Although only 20% of control HCD-mice experienced a preovulatory-like LH surge, LH surges could be induced in almost all neuron-specific SOCS3 knock-out mice on this diet. In contrast to females, HCD-fed male mice did not exhibit any fertility decline compared with low caloric diet-fed males despite their resistance to the satiety effects of leptin. These data show that deletion of SOCS3 delays the onset of leptin resistance and infertility in HCD-fed female mice, but given continued HCD feeding this state does eventually occur, presumably in response to other mechanisms inhibiting leptin signal transduction. SIGNIFICANCE STATEMENT: Obesity is commonly associated with infertility in humans and other animals. Treatments for human infertility show a decreased success rate with increasing body mass index. A hallmark of obesity is an increase in circulating leptin levels; despite this, the brain responds as if there were low levels of leptin, leading to increased appetite and suppressed fertility. Here we show that leptin resistant infertility is caused in part by the leptin signaling molecule SOCS3. Deletion of SOCS3 from brain neurons delays the onset of diet-induced infertility.


Assuntos
Hipotálamo/metabolismo , Infertilidade/terapia , Leptina/metabolismo , Hormônio Luteinizante/sangue , Neurônios/fisiologia , Obesidade/complicações , Prosencéfalo/patologia , Proteína 3 Supressora da Sinalização de Citocinas/deficiência , Fatores Etários , Animais , Peso Corporal , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/genética , Quinase da Proteína Quinase Dependente de Cálcio-Calmodulina/metabolismo , Dieta Hiperlipídica/efeitos adversos , Modelos Animais de Doenças , Ciclo Estral/efeitos dos fármacos , Ciclo Estral/genética , Feminino , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Infertilidade/etiologia , Masculino , Camundongos , Camundongos Endogâmicos DBA , Camundongos Transgênicos , Obesidade/etiologia , Proteína 3 Supressora da Sinalização de Citocinas/genética
14.
J Neurosci ; 36(35): 9173-85, 2016 08 31.
Artigo em Inglês | MEDLINE | ID: mdl-27581458

RESUMO

UNLABELLED: Tuberoinfundibular dopamine (TIDA) neurons, known as neuroendocrine regulators of prolactin secretion from the pituitary gland, also release GABA within the hypothalamic arcuate nucleus. As these neurons express prolactin receptors (Prlr), prolactin may regulate GABA secretion from TIDA neurons, potentially mediating actions of prolactin on hypothalamic function. To investigate whether GABA is involved in feedback regulation of TIDA neurons, we examined the physiological consequences of conditional deletion of Prlr in GABAergic neurons. For comparison, we also examined mice in which Prlr were deleted from most forebrain neurons. Both neuron-specific and GABA-specific recombination of the Prlr gene occurred throughout the hypothalamus and in some extrahypothalamic regions, consistent with the known distribution of Prlr expression, indicative of knock-out of Prlr. This was confirmed by a significant loss of prolactin-induced phosphorylation of STAT5, a marker of prolactin action. Several populations of GABAergic neurons that were not previously known to be prolactin-sensitive, notably in the medial amygdala, were identified. Approximately 50% of dopamine neurons within the arcuate nucleus were labeled with a GABA-specific reporter, but Prlr deletion from these dopamine/GABA neurons had no effect on feedback regulation of prolactin secretion. In contrast, Prlr deletion from all dopamine neurons resulted in profound hyperprolactinemia. The absence of coexpression of tyrosine hydroxylase, a marker for dopamine production, in GABAergic nerve terminals in the median eminence suggested that rather than a functional redundancy within the TIDA population, the dopamine/GABA neurons in the arcuate nucleus represent a subpopulation with a functional role distinct from the regulation of prolactin secretion. SIGNIFICANCE STATEMENT: Using a novel conditional deletion of the prolactin receptor, we have identified functional subpopulations in hypothalamic dopamine neurons. Although commonly considered a uniform population of neuroendocrine neurons involved in the control of prolactin secretion, we have shown that approximately half of these neurons express GABA as well as dopamine, but these neurons are not necessary for the feedback regulation of prolactin secretion. The absence of tyrosine hydroxylase in GABAergic nerve terminals in the median eminence suggests that only the non-GABAergic dopamine neurons are involved in the control of pituitary prolactin secretion, and the GABAergic subpopulation may function as interneurons within the arcuate nucleus to regulate other aspects of hypothalamic function.


Assuntos
Núcleo Arqueado do Hipotálamo/citologia , Neurônios Dopaminérgicos/metabolismo , Receptores da Prolactina/metabolismo , Ácido gama-Aminobutírico/metabolismo , Animais , Feminino , Regulação da Expressão Gênica/genética , Glutamato Descarboxilase/genética , Glutamato Descarboxilase/metabolismo , Proteínas de Fluorescência Verde/genética , Proteínas de Fluorescência Verde/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , RNA Mensageiro/metabolismo , RNA não Traduzido/genética , RNA não Traduzido/metabolismo , Radioimunoensaio , Ratos , Receptores da Prolactina/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo , Estatísticas não Paramétricas , Ácido gama-Aminobutírico/farmacologia
15.
J Physiol ; 595(11): 3591-3605, 2017 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-28211122

RESUMO

KEY POINTS: During lactation, prolactin promotes milk synthesis and oxytocin stimulates milk ejection. In virgin rats, prolactin inhibits the activity of oxytocin-secreting neurones. We found that prolactin inhibition of oxytocin neurone activity is lost in lactation, and that some oxytocin neurones were excited by prolactin in lactating rats. The change in prolactin regulation of oxytocin neurone activity was not associated with a change in activation of intracellular signalling pathways known to couple to prolactin receptors. The change in prolactin regulation of oxytocin neurone activity in lactation might allow coordinated activation of both populations of neurones when required for successful lactation. ABSTRACT: Secretion of prolactin for milk synthesis and oxytocin for milk secretion is required for successful lactation. In virgin rats, prolactin inhibits oxytocin neurones but this effect would be counterproductive during lactation when secretion of both hormones is required for synthesis and delivery of milk to the newborn. Hence, we determined the effects of intracerebroventricular (i.c.v.) prolactin on oxytocin neurones in urethane-anaesthetised virgin, pregnant and lactating rats. Prolactin (2 µg) consistently inhibited oxytocin neurones in virgin and pregnant rats (by 1.9 ± 0.4 and 1.8 ± 0.5 spikes s-1 , respectively), but not in lactating rats; indeed, prolactin excited six of 27 oxytocin neurones by >1 spike s-1 in lactating rats but excited none in virgin or pregnant rats (χ22  = 7.2, P = 0.03). Vasopressin neurones were unaffected by prolactin (2 µg) in virgin rats but were inhibited by 1.1 ± 0.2 spikes s-1 in lactating rats. Immunohistochemistry showed that i.c.v. prolactin increased oxytocin expression in virgin and lactating rats and increased signal transducer and activator of transcription 5 phosphorylation to a similar extent in oxytocin neurones of virgin and lactating rats. Western blotting showed that i.c.v. prolactin did not affect phosphorylation of extracellular regulated kinase 1 or 2, or of Akt in the supraoptic or paraventricular nuclei of virgin or lactating rats. Hence, prolactin inhibition of oxytocin neurones is lost in lactation, which might allow concurrent elevation of prolactin secretion from the pituitary gland and activation of oxytocin neurones for synthesis and delivery of milk to the newborn.


Assuntos
Lactação/metabolismo , Neurônios/metabolismo , Ocitocina/metabolismo , Gravidez/metabolismo , Prolactina/metabolismo , Potenciais de Ação , Animais , Feminino , Neurônios/fisiologia , Ratos
16.
FASEB J ; 30(2): 1002-10, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26567005

RESUMO

The anterior pituitary hormone prolactin exerts important physiologic actions in the brain. However, the mechanism by which prolactin crosses the blood-brain barrier and enters the brain is not completely understood. On the basis of high expression of the prolactin receptor in the choroid plexus, it has been hypothesized that the receptor may bind to prolactin in the blood and translocate it into the cerebrospinal fluid (CSF). This study aimed to test this hypothesis by investigating transport of (125)I-labeled prolactin ((125)I-prolactin) into the brain of female mice in the presence and absence of the prolactin receptor (PRLR(-/-)). Peripherally administered prolactin rapidly activates brain neurons, as evidenced by prolactin-induced phosphorylation of signal transducer and activator of transcription 5 (pSTAT5) in neurons within 30 min of administration. The transport of prolactin into the brain was saturable, with transport effectively blocked only by a very high dose of unlabeled ovine prolactin. Transport was regulated, as in lactating mice with chronically elevated levels of prolactin, the rate of (125)I-prolactin transport into the brain was significantly increased compared to nonlactating controls. There was no change in the rate of (125)I-prolactin transport into the brain in PRLR(-/-) mice lacking functional prolactin receptors compared to control mice, indicating transport is independent of the prolactin receptor. These data suggest that prolactin transport into the brain involves another as yet unidentified transporter molecule. Because CSF levels of (125)I-prolactin were very low, even up to 90 min after administration, the data suggest that CSF is not the major route by which blood prolactin gains access to neurons in the brain.


Assuntos
Encéfalo/metabolismo , Neurônios/metabolismo , Prolactina/metabolismo , Receptores da Prolactina/metabolismo , Animais , Feminino , Masculino , Camundongos , Camundongos Knockout , Prolactina/genética , Transporte Proteico/fisiologia , Receptores da Prolactina/genética , Fator de Transcrição STAT5/genética , Fator de Transcrição STAT5/metabolismo
17.
Biol Reprod ; 90(6): 130, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24829026

RESUMO

It is well-accepted that maternal obesity affects fetal development to elevate the risk of offspring disease, but how this happens is unclear. Understanding placental alterations during gestation as a consequence of maternal obesity is critical to understanding the impact of maternal obesity on fetal programming. Here, we used histological criteria, flow cytometry, quantitative PCR, and multiplex cytokine assays to examine changes in cell proliferation and inflammation in the placenta during gestation in a mouse model of maternal high-fat diet-induced obesity. We focused on mouse mid- to late gestation (approximately human late first and third trimester) because previous literature has indicated that this is when important regulators of metabolism, including that of the brain and endocrine pancreas, are forming. These studies were undertaken in order to understand how maternal obesity changes the placenta during this period, which might suggest a causal link to later-life metabolic dysfunction. We found that labyrinth thickness and cell proliferation were decreased at both pregnancy stages in obese compared to normal weight pregnancies. Inflammation was also altered in late pregnancy with increased macrophage activation and elevated cytokine gene expression in the placenta as well as increased abundance of some cytokines in the fetal circulation in obese compared to normal weight pregnancies. These changes in macrophage activation and cytokine gene expression were of greater magnitude and significance in placentas accompanying male fetuses. These data provide insight into placental changes in obesity and identify potential links between placental inflammation and programming of offspring disease by maternal obesity.


Assuntos
Inflamação/patologia , Obesidade/patologia , Placenta/patologia , Complicações na Gravidez/patologia , Efeitos Tardios da Exposição Pré-Natal/patologia , Animais , Animais Recém-Nascidos , Peso Corporal/imunologia , Proliferação de Células , Citocinas/sangue , Citocinas/imunologia , Feminino , Regulação da Expressão Gênica no Desenvolvimento/imunologia , Inflamação/imunologia , Macrófagos/imunologia , Macrófagos/patologia , Masculino , Camundongos Endogâmicos C57BL , Obesidade/imunologia , Placenta/imunologia , Gravidez , Complicações na Gravidez/imunologia , Efeitos Tardios da Exposição Pré-Natal/imunologia , Caracteres Sexuais
18.
J Neurosci ; 32(45): 15913-21, 2012 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-23136429

RESUMO

Retroperitoneal white adipose tissue (rWAT) and subcutaneous (inguinal) white adipose tissue (iWAT) are both innervated and regulated by sympathetic efferents, but the distribution and identity of the cells in the brain that regulate sympathetic outflow are poorly characterized. Our aim was to use two isogenic strains of a neurotropic virus (pseudorabies, Bartha) tagged with either green or red fluorescent reporters to identify cells in the brain that project to rWAT and/or iWAT. These viruses were injected into separate WAT depots in male and female Sprague Dawley rats. Retrogradely labeled neurons in the CNS were characterized by immunohistochemistry and PCR. For the latter, laser capture of individual virally labeled neurons was used. All virally labeled brain regions contained neurons projecting to either and both WAT depots. Neurons to abdominal fat were the most abundant in males, whereas females contained a greater proportion of neurons to subcutaneous via private lines and collateral branches. Retrogradely labeled neurons directed to WAT expressed estrogen receptor-α (ERα), and fewer neurons to subcutaneous WAT expressed ERα in males. Regardless of sex, projections from the arcuate nucleus were predominantly from pro-opiomelanocortin cells, with a notable lack of projections from agouti-related protein-expressing neurons. Within the lateral hypothalamus, neurons directed to rWAT and iWAT expressed orexin and melanin-concentrating hormone (MCH), but male rats had a predominance of MCH directed to iWAT. In conclusion, the neurochemical substrates that project through polysynaptic pathways to iWAT and rWAT are different in male and female rats, suggesting that metabolic regulation of rWAT and iWAT is sexually dimorphic.


Assuntos
Gordura Abdominal/inervação , Tecido Adiposo Branco/inervação , Encéfalo/metabolismo , Neurônios/metabolismo , Caracteres Sexuais , Gordura Subcutânea/inervação , Gordura Abdominal/metabolismo , Tecido Adiposo Branco/metabolismo , Animais , Receptor alfa de Estrogênio/metabolismo , Feminino , Hormônios Hipotalâmicos/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Masculino , Melaninas/metabolismo , Vias Neurais/metabolismo , Neuropeptídeos/metabolismo , Orexinas , Hormônios Hipofisários/metabolismo , Pró-Opiomelanocortina/metabolismo , Ratos , Ratos Sprague-Dawley , Gordura Subcutânea/metabolismo
19.
Biochem J ; 447(1): 175-84, 2012 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-22849606

RESUMO

GSK3ß (glycogen synthase kinase 3ß) is a ubiquitous kinase that plays a key role in multiple intracellular signalling pathways, and increased GSK3ß activity is implicated in disorders ranging from cancer to Alzheimer's disease. In the present study, we provide the first evidence of increased hypothalamic signalling via GSK3ß in leptin-deficient Lep(ob/ob) mice and show that intracerebroventricular injection of a GSK3ß inhibitor acutely improves glucose tolerance in these mice. The beneficial effect of the GSK3ß inhibitor was dependent on hypothalamic signalling via PI3K (phosphoinositide 3-kinase), a key intracellular mediator of both leptin and insulin action. Conversely, neuron-specific overexpression of GSK3ß in the mediobasal hypothalamus exacerbated the hyperphagia, obesity and impairment of glucose tolerance induced by a high-fat diet, while having little effect in controls fed standard chow. These results demonstrate that increased hypothalamic GSK3ß signalling contributes to deleterious effects of leptin deficiency and exacerbates high-fat diet-induced weight gain and glucose intolerance.


Assuntos
Ingestão de Alimentos/fisiologia , Glucose/metabolismo , Quinase 3 da Glicogênio Sintase/metabolismo , Hipotálamo/enzimologia , Animais , Núcleo Arqueado do Hipotálamo/enzimologia , Núcleo Arqueado do Hipotálamo/fisiologia , Sequência de Bases , Primers do DNA/genética , Dieta Hiperlipídica/efeitos adversos , Intolerância à Glucose/enzimologia , Intolerância à Glucose/etiologia , Quinase 3 da Glicogênio Sintase/deficiência , Quinase 3 da Glicogênio Sintase/genética , Glicogênio Sintase Quinase 3 beta , Humanos , Hipotálamo/fisiologia , Leptina/deficiência , Leptina/genética , Masculino , Camundongos , Camundongos Knockout , Obesidade/enzimologia , Obesidade/etiologia , Transdução de Sinais , Aumento de Peso/fisiologia
20.
Proc Natl Acad Sci U S A ; 107(34): 15199-204, 2010 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-20699217

RESUMO

Androgen-independent recurrence is the major limit of androgen ablation therapy for prostate cancer. Identification of alternative pathways promoting prostate tumor growth is thus needed. Stat5 has been recently shown to promote human prostate cancer cell survival/proliferation and to be associated with early prostate cancer recurrence. Stat5 is the main signaling pathway triggered by prolactin (PRL), a growth factor whose local production is also increased in high-grade prostate cancers. The first aim of this study was to use prostate-specific PRL transgenic mice to address the mechanisms by which local PRL induces prostate tumorogenesis. We report that (i) Stat5 is the major signaling cascade triggered by local PRL in the mouse dorsal prostate, (ii) this model recapitulates prostate tumorogenesis from precancer lesions to invasive carcinoma, and (iii) tumorogenesis involves dramatic accumulation and abnormal spreading of p63-positive basal cells, and of stem cell antigen-1-positive cells identified as a stem/progenitor-like subpopulation. Because basal epithelial stem cells are proposed to serve as tumor-initiating cells, we challenged the relevance of local PRL as a previously unexplored therapeutic target. Using a double-transgenic approach, we show that Delta1-9-G129R-hPRL, a competitive PRL-receptor antagonist, prevented early stages of prostate tumorogenesis by reducing or inhibiting Stat5 activation, cell proliferation, abnormal basal-cell pattern, and frequency or grade of intraepithelial neoplasia. This study identifies PRL receptor/Stat5 as a unique pathway, initiating prostate tumorogenesis by altering basal-/stem-like cell subpopulations, and strongly supports the importance of further developing strategies to target locally overexpressed PRL in human prostate cancer.


Assuntos
Neoplasias Hormônio-Dependentes/metabolismo , Neoplasias Hormônio-Dependentes/patologia , Prolactina/metabolismo , Neoplasias da Próstata/metabolismo , Neoplasias da Próstata/patologia , Animais , Sequência de Bases , Proliferação de Células , Primers do DNA/genética , Humanos , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos CBA , Camundongos Transgênicos , Neoplasias Hormônio-Dependentes/genética , Neoplasias Hormônio-Dependentes/terapia , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Fragmentos de Peptídeos/genética , Fragmentos de Peptídeos/metabolismo , Prolactina/genética , Próstata/metabolismo , Próstata/patologia , Neoplasias da Próstata/genética , Neoplasias da Próstata/terapia , Ratos , Receptores da Prolactina/antagonistas & inibidores , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Fator de Transcrição STAT5/metabolismo , Transdução de Sinais , Distribuição Tecidual
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA