Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
J Struct Biol ; 174(3): 552-62, 2011 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-21440635

RESUMO

Three-dimensional (3D) maps of proteins within the context of whole cells are important for investigating cellular function. However, 3D reconstructions of whole cells are challenging to obtain using conventional transmission electron microscopy (TEM). We describe a methodology to determine the 3D locations of proteins labeled with gold nanoparticles on whole eukaryotic cells. The epidermal growth factor receptors on COS7 cells were labeled with gold nanoparticles, and critical-point dried whole-mount cell samples were prepared. 3D focal series were obtained with aberration-corrected scanning transmission electron microscopy (STEM), without tilting the specimen. The axial resolution was improved with deconvolution. The vertical locations of the nanoparticles in a whole-mount cell were determined with a precision of 3nm. From the analysis of the variation of the axial positions of the labels we concluded that the cellular surface was ruffled. To achieve sufficient stability of the sample under electron beam irradiation during the recording of the focal series, the sample was carbon coated. A quantitative method was developed to analyze the stability of the ultrastructure after electron beam irradiation using TEM. The results of this study demonstrate the feasibility of using aberration-corrected STEM to study the 3D nanoparticle distribution in whole cells.


Assuntos
Células Eucarióticas , Ouro/química , Processamento de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Proteínas/química , Animais , Células COS/ultraestrutura , Chlorocebus aethiops , Nanopartículas/química , Nanopartículas/ultraestrutura
2.
Elife ; 62017 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-28418331

RESUMO

The role of the cellular microenvironment in enabling metazoan tissue genesis remains obscure. Ctenophora has recently emerged as one of the earliest-branching extant animal phyla, providing a unique opportunity to explore the evolutionary role of the cellular microenvironment in tissue genesis. Here, we characterized the extracellular matrix (ECM), with a focus on collagen IV and its variant, spongin short-chain collagens, of non-bilaterian animal phyla. We identified basement membrane (BM) and collagen IV in Ctenophora, and show that the structural and genomic features of collagen IV are homologous to those of non-bilaterian animal phyla and Bilateria. Yet, ctenophore features are more diverse and distinct, expressing up to twenty genes compared to six in vertebrates. Moreover, collagen IV is absent in unicellular sister-groups. Collectively, we conclude that collagen IV and its variant, spongin, are primordial components of the extracellular microenvironment, and as a component of BM, collagen IV enabled the assembly of a fundamental architectural unit for multicellular tissue genesis.


Assuntos
Membrana Basal/química , Colágeno Tipo IV/análise , Colágeno Tipo IV/genética , Ctenóforos/fisiologia , Matriz Extracelular/química , Animais , Ctenóforos/citologia , Ctenóforos/genética , Ctenóforos/metabolismo , Evolução Molecular
3.
Cancer Res ; 70(15): 6139-49, 2010 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-20631080

RESUMO

The mechanisms by which a primary tumor affects a selected distant organ before tumor cell arrival remain to be elucidated. This report shows that Gr-1+CD11b+ cells are significantly increased in lungs of mice bearing mammary adenocarcinomas before tumor cell arrival. In the premetastatic lungs, these immature myeloid cells significantly decrease IFN-gamma production and increase proinflammatory cytokines. In addition, they produce large quantities of matrix metalloproteinase 9 (MMP9) and promote vascular remodeling. Deletion of MMP9 normalizes aberrant vasculature in the premetastatic lung and diminishes lung metastasis. The production and activity of MMP9 is selectively restricted to lungs and organs with a large number of Gr-1+CD11b+ cells. Our work reveals a novel protumor mechanism for Gr-1+CD11b+ cells that changes the premetastatic lung into an inflammatory and proliferative environment, diminishes immune protection, and promotes metastasis through aberrant vasculature formation. Thus, inhibition of Gr-1+CD11b+ cells could normalize the premetastatic lung environment, improve host immunosurveillance, and inhibit tumor metastasis.


Assuntos
Adenocarcinoma/imunologia , Adenocarcinoma/secundário , Antígeno CD11b/imunologia , Neoplasias Pulmonares/imunologia , Neoplasias Pulmonares/secundário , Neoplasias Mamárias Experimentais/imunologia , Neoplasias Mamárias Experimentais/patologia , Adenocarcinoma/enzimologia , Adenocarcinoma/patologia , Animais , Processos de Crescimento Celular/imunologia , Linhagem Celular Tumoral , Ativação Enzimática , Feminino , Humanos , Interferon gama/antagonistas & inibidores , Interferon gama/biossíntese , Interferon gama/imunologia , Pulmão/irrigação sanguínea , Pulmão/imunologia , Pulmão/patologia , Neoplasias Pulmonares/irrigação sanguínea , Neoplasias Pulmonares/enzimologia , Neoplasias Mamárias Experimentais/enzimologia , Metaloproteinase 9 da Matriz/biossíntese , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Knockout , Células Mieloides/imunologia , Células Mieloides/patologia , Metástase Neoplásica , Neovascularização Patológica/enzimologia , Neovascularização Patológica/imunologia , Neovascularização Patológica/patologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA