Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 82
Filtrar
1.
Langmuir ; 2023 Jan 11.
Artigo em Inglês | MEDLINE | ID: mdl-36630264

RESUMO

MXenes are 2D nanomaterials with a wide array of possible compositions; they feature a unique combination of properties such as high electrical conductivity, hydrophilicity, and colloidal stability which makes them attractive for a variety of applications. However, the shelf life and industrial utility of MXenes face challenges due to their tendency to oxidize and disintegrate, particularly in dispersions. Thus, it is crucial to find effective ways to ensure the degradation stability of MXenes. This feature article reviews the key factors affecting the degradation of MXenes such as pH, concentration of the dispersion, humidity, and storage temperature. In addition, we review our group's progress in mitigating the degradation of MXenes such as low-temperature storage, the use of antioxidants, and thermal annealing, particularly for Ti3C2Tz. These simple approaches may allow for applications of MXenes on a commercial scale.

2.
Soft Matter ; 19(32): 6168-6175, 2023 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-37548747

RESUMO

Radio-frequency (RF) heating of thermosetting epoxies is an agile method to decouple the extrudability of epoxy resins from their buildability for additive manufacturing. Through this method, the resin is extruded in the liquid state at the early stages of curing. Then, an RF applicator induces a rapid and uniform increase in temperature of the resin, accelerating the solidification of the printed feature. Understanding the evolution of the resin's RF heating response as it cures is therefore critical in meeting the demands of additive manufacturing. In this work, we show that the high-frequency dielectric loss, determined using in situ rheo-dielectric measurements, of both neat and carbon nanotube (CNT) filled resins is correlated to the heating response at different temperatures throughout curing. Furthermore, we show that the presence of CNTs within the resin augments the heating response and that their dispersion quality is critical to achieving rapid heating rates during the cure.

3.
Langmuir ; 37(8): 2649-2657, 2021 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-33591205

RESUMO

MXenes, transition metal carbides or nitrides, have gained great attention in recent years due to their high electrical conductivity and catalytic activity, hydrophilicity, and diverse surface chemistry. However, high hydrophilicity and negative ζ potential of the MXene nanosheets limit their processability and interfacial assembly. Previous examples for modifying the dispersibility and wettability of MXenes have focused on the use of organic ligands, such as alkyl amines, or covalent modification with triethoxysilanes. Here, we report a simple method to access MXene-stabilized oil-in-water emulsions by using common inorganic salts (e.g., NaCl) to flocculate the nanosheets and demonstrate the use of these Pickering emulsions to prepare capsules with shells of MXene and polymer. Ti3C2Tz nanosheets are used as the representative MXene. The salt-flocculated MXene nanosheets produce emulsions that are stable for days, as determined by optical microscopy imaging. The incorporation of a diisocyanate in the discontinuous oil phase and diamine in the continuous water phase led to interfacial polymerization and the formation of capsules. The capsules were characterized by Fourier transform infrared (FTIR) spectroscopy, X-ray photoelectron spectroscopy (XPS), and scanning electron microscopy (SEM), confirming the presence of both polymer and nanosheets. The addition of ethanol to the capsules led to the removal of the toluene core and retention of the shell structure. The ability to assemble MXene nanosheets at fluid-fluid interfaces without the use of ligands or cosurfactants expands the accessible material constructs relevant for biomedical engineering, water purification, energy storage, electromagnetic electronics, catalysis, and so on.

4.
Langmuir ; 37(38): 11338-11350, 2021 Sep 28.
Artigo em Inglês | MEDLINE | ID: mdl-34523932

RESUMO

MXenes, 2D nanomaterials derived from ceramic MAX phases, have drawn considerable interest in a wide variety of fields including energy storage, catalysis, and sensing. There are many possible MXene compositions due to the chemical and structural diversity of parent MAX phases, which can bear different possible metal atoms "M", number of layers, and carbon or nitrogen "X" constituents. Despite the potential variety in MXene types, the bulk of MXene research focuses upon the first MXene discovered, Ti3C2T. With the recent discovery of polymer/MXene multilayer assemblies as thin films and coatings, there is a need to broaden the accessible types of multilayers by including MXenes other than Ti3C2Tz; however, it is not clear how altering the MXene type influences the resulting multilayer growth and properties. Here, we report on the first use of MXenes other than Ti3C2Tz, specifically Ti2CTz and Nb2CTz, for the layer-by-layer (LbL) assembly of polycation/MXene multilayers. By comparing these MXenes, we evaluate both how changing M (Ti vs Nb) and "n" (Ti3C2Tzvs Ti2CTz) affect the growth and properties of the resulting multilayer. Specifically, the aqueous LbL assembly of each MXene with poly(diallyldimethylammonium) into films and coatings is examined. Further, we compare the oxidative stability, optoelectronic properties (refractive index, absorption coefficient, optical conductivity, and direct and indirect optical band gaps), and the radio frequency heating response of each multilayer. We observe that MXene multilayers with higher "n" are more electrically conductive and oxidatively stable. We also demonstrate that Nb2CTz containing films have lower optical band gaps and refractive indices at the cost of lower electrical conductivities as compared to their Ti2CTz counterparts. Our work demonstrates that the properties of MXene/polycation multilayers are highly dependent on the choice of constituent MXene and that the MXene type can be altered to suit specific applications.

5.
Nano Lett ; 20(4): 2310-2315, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32105487

RESUMO

Material extrusion (ME) 3D printing is a revolutionary technique for manufacturing thermoplastic parts; however, the printed parts typically suffer from poor interlayer bonding, which causes weak tensile strength in the build direction. Many methods have been proposed to address the mechanical deficiencies of 3D-printed parts, but most fall short of a production-ready solution. Here we report the use of a dielectric barrier discharge (DBD) plasma electrode mounted concentrically around the nozzle of an ME 3D printer for in situ welding of thermoplastic parts. This is the first report of a DBD being used as a non-contact means to induce Joule heating in resistive composite materials. The polymer welding process is accomplished by coupling the DBD with the carbon nanotube-loaded interfaces between the 3D-printed layers. The current passing through the part results in rapid resistive heating of the nanotubes and thermal welding of the interfaces. We show that parts printed with this method have isotropic strength and are equivalent to their injection-molded counterparts.

6.
Langmuir ; 36(18): 4975-4984, 2020 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-32308003

RESUMO

A Landau-de Gennes formulation coupled with a mass-transfer equation was used to track the evaporation front and the development of chiral microstructures during the casting of sulfuric acid-hydrolyzed cellulose nanocrystal (CNC) films. These simulations are compared to thin-film casting experiments that used analogous processing parameters and environments. The results show that the initial concentration, chiral strength, surface anchoring, speed of drying, and the influence of initial shear alignment all affect the uniformity of the microstructure and the orientation of the chiral director. In this report, we aim to show that under optimal casting conditions, the lateral size of planar microstructural domains that exhibit uniform selective reflection can be achieved on the order of millimeters.

7.
Langmuir ; 34(29): 8550-8559, 2018 07 24.
Artigo em Inglês | MEDLINE | ID: mdl-29950094

RESUMO

Graphene oxide (GO)-based gels are attractive because of their ability to retain individual nanosheet properties in a three-dimensional (3D) bulk material. The final morphology and properties of these 3D gel networks depend strongly on the type and density of cross-links, and these gels can be dried and annealed to form aerogels with both high conductivity (560 S/m) and high surface area (1700 m2/g). The results show that both ammonia content and the parent nanosheet morphology (crumpled vs flat) have a strong influence on the cross-linked structure and composition; notably, nitrogen is found in the gels, suggesting that ammonia actively participates in the reaction rather than as a mere catalyst. The GO nanosheet morphology may be altered using spray-drying to obtain crumpled GO (cGO) nanosheets and form cGO gels; this allows for an additional handle in the creation of GO-based gels with tunable density, electrical conductivity, and surface area.

8.
Langmuir ; 34(44): 13274-13282, 2018 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-30301352

RESUMO

A Landau-de Gennes formulation was implemented in dynamic finite element simulations to compare with postshear relaxation experiments that were conducted on cholesteric cellulose nanocrystal (CNC) dispersions. Our study focused on the microstructural reassembly of CNCs in lyotropic dispersions as parameters such as chiral strength and gap confinement were varied. Our simulation results show that homeotropic and/or more complicated three-dimensional helical configurations are possible, depending on the choice of these parameters. We also observed how dynamic banding patterns develop into the hierarchical microstructures that are characterized by an equilibrium pitch length in both the experiments and simulations. This work has immediate relevance for cellulose nanocrystal dispersion processing and provides new insight into fluid phase ordering for tailorable optical properties.

9.
Environ Sci Technol ; 52(2): 794-800, 2018 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-29261302

RESUMO

The increase in use of nanomaterials such as multiwalled carbon nanotubes (MWCNTs) presents a need to study their interactions with the environment. Trophic transfer was measured between Daphnia magna and Pimephales promelas (fathead minnow, FHM) exposed to MWCNTs with different outer diameter (OD) sizes (MWCNT1 = 8-15 nm OD and MWCNT2 = 20-30 nm OD) in the presence and absence of copper. Pristine FHM were fed D. magna, previously exposed for 3 d to MWCNT1 or MWCNT2 (0.1 mg/L) and copper (0.01 mg/L), for 7 d. D. magna bioaccumulated less MWCNT1 (0.02 µg/g) than MWCNT2 (0.06 µg/g), whereas FHM accumulated more MWCNT1 (0.81 µg/g) than MWCNT2 (0.04 µg/g). In the presence of copper, MWCNT bioaccumulation showed an opposite trend. Mostly MWCNT1 (0.03 µg/g) bioaccumulated in D. magna, however less MWCNT1 (0.21 µg/g) than MWCNT2 (0.32 µg/g) bioaccumulated in FHM. Bioaccumulation factors were higher for MWCNT1s than MWCNT2. However, an opposite trend was observed when copper was added. Plasma metallothionein-2 was measured among treatments; however concentrations were not statistically different from the control. This study demonstrates that trophic transfer of MWCNTs is possible in the aquatic environment and further exploration with mixtures can strengthen the understanding of MWCNT environmental behavior.


Assuntos
Cyprinidae , Nanotubos de Carbono , Poluentes Químicos da Água , Animais , Cobre , Daphnia , Íons
10.
Soft Matter ; 13(45): 8451-8462, 2017 Nov 22.
Artigo em Inglês | MEDLINE | ID: mdl-29087424

RESUMO

Cellulose nanocrystals (CNC) have been studied as nanostructured building blocks for functional materials and function as a model nanomaterial mesogen for cholesteric (chiral nematic) liquid crystalline phases. In this study, both rheology and small angle neutron scattering (RheoSANS) were used to measure changes in flow-oriented order parameter and viscosity as a function of shear rate for isotropic, biphasic, liquid crystalline, and gel dispersions of CNC in deuterium oxide (D2O). In contrast to plots of viscosity versus shear rate, the order parameter trends showed three distinct rheological regions over a range of concentrations. This finding is significant because the existence of three rheological regions as a function of shear rate is a long-standing signature of liquid crystalline phases composed of rod-like polymers, but observing this trend has been elusive for high-concentration dispersions of anisotropic nanomaterials. The results of this work are valuable for guiding the development of processing methodologies for producing ordered materials from CNC dispersions and the broader class of chiral nanomaterial mesogens.

11.
Langmuir ; 32(41): 10699-10704, 2016 Oct 18.
Artigo em Inglês | MEDLINE | ID: mdl-27723350

RESUMO

Sonication-assisted graphene production from graphite is a popular lab-scale approach in which ultrasound energy breaks down graphite sheets into graphene flakes in aqueous medium. Dispersants (surfactant molecules) are incorporated into the solution to prevent individual graphene flakes from reaggregating. However, in solution these dispersants self-assemble into various structures, which can interfere with the characterization of the graphene produced. In this study, we characterized graphene dispersions stabilized by a family of pyrene-based surfactants that facilitate a high exfoliation yield. These surfactants self-assembled to form flakes and ribbons-shapes very similar to those of graphene structures. The dispersant structures were present both in the graphene dispersion and in the precipitate after the solvent had been evaporated and could therefore have been mistakenly identified as graphene by electron microscopy techniques and other characterization techniques, such as Raman and X-ray photoelectron spectroscopy. Contrary to previous reports, we showed-by removing the dispersants by filtration and washing-that the surfactants did not affect the shape of the graphene prepared by sonication.

12.
Langmuir ; 32(44): 11591-11599, 2016 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-27740775

RESUMO

Despite a range of promising applications, liquid-phase exfoliation of boron nitride nanosheets (BNNSs) is limited, both by low yield in common solvents as well as the disadvantages of using dissolved surfactants. One recently reported approach is the use of cosolvent systems to increase the as-obtained concentration of BNNS; the role of these solvents in aiding exfoliation and/or aiding colloidal stability of BNNSs is difficult to distinguish. In this paper, we have investigated the use of a t-butanol/water cosolvent to disperse BNNSs. We utilize solvent-exchange experiments to demonstrate that the t-butanol is in fact essential to colloidal stability; we then utilized molecular dynamics simulations to explore the mechanism of t-butanol/BNNS interactions. Taken together, the experimental and simulation results show that the key to the success of t-butanol (as compared to the other alcohols of higher or lower molecular weight) lies in its ability to act as a "liquid dispersant" which allows it to favorably interact with both water and BNNSs. Additionally, we show that the stable dispersions of BNNS in water/t-butanol systems may be freeze-dried to yield nonaggregated, redispersible BNNS powders, which would be useful in an array of industrial processes.

13.
Nanotechnology ; 27(23): 235702, 2016 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-27124893

RESUMO

Using coarse-grained Brownian dynamics simulations, we study the relationship between hydrodynamic radius ([Formula: see text] and the lateral size ([Formula: see text] of dispersed nanosheets. Our simulation results show that the bending modulus of the nanosheets has a significant impact on the exponent of this power-law relationship between the radius of gyration (and thus [Formula: see text] and [Formula: see text] The exponent can vary from 0.17 to 1. This sheds light on the interpretation of dynamic light scattering (DLS) measurements, such that DLS data can capture both nanosheet lateral size and modulus (which is, in turn, affected by nanosheet thickness).

14.
Nanotechnology ; 27(50): 505601, 2016 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-27855123

RESUMO

Scalable production of graphene through liquid-phase exfoliation has been plagued by low yields. Although several recent studies have attempted to improve graphene exfoliation technology, the problem of separating colloidal nanosheets from unexfoliated parent material has received far less attention. Here we demonstrate a scalable method for improving nanosheet yield through a facile washing process. By probing the sedimentation of liquid-phase exfoliated slurries of graphene nanosheets and parent material, we found that a portion of exfoliated graphene is entrapped in the sediment, but can be recovered by repeatedly washing the slurry of nanosheet and parent material with additional solvent. We found this process to significantly increase the overall yield of graphene (graphene/parent material) and recover a roughly constant proportion of graphene with each wash. The cumulative amount of graphene recovered is only a function of total solvent volume. Moreover, we found this technique to be applicable to other types of nanosheets such as boron nitride nanosheets.

15.
J Nanobiotechnology ; 14(1): 40, 2016 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-27278090

RESUMO

BACKGROUND: Agricultural soils represent a potential sink for increasing amounts of different nanomaterials that nowadays inevitably enter the environment. Knowledge on the relation between their actual exposure concentrations and biological effects on crops and symbiotic organisms is therefore of high importance. In this part of a joint companion study, we describe the vertical translocation as well as plant uptake of three different titanium dioxide (nano-)particles (TiO2 NPs) and multi-walled carbon nanotubes (MWCNTs) within a pot experiment with homogenously spiked natural agricultural soil and two plant species (red clover and wheat). RESULTS: TiO2 NPs exhibited limited mobility from soil to leachates and did not induce significant titanium uptake into both plant species, although average concentrations were doubled from 4 to 8 mg/kg Ti at the highest exposures. While the mobility of MWCNTs in soil was limited as well, microwave-induced heating suggested MWCNT-plant uptake independent of the exposure concentration. CONCLUSIONS: Quantification of actual exposure concentrations with a series of analytical methods confirmed nominal ones in soil mesocosms with red clover and wheat and pointed to low mobility and limited plant uptake of titanium dioxide nanoparticles and carbon nanotubes.


Assuntos
Nanopartículas/metabolismo , Nanotubos de Carbono/análise , Raízes de Plantas/metabolismo , Plantas/metabolismo , Solo/química , Titânio/metabolismo , Transporte Biológico , Exposição Ambiental , Temperatura Alta , Micro-Ondas , Nanopartículas/análise , Raízes de Plantas/ultraestrutura , Plantas/ultraestrutura , Titânio/análise
16.
Small ; 11(22): 2661-8, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25641827

RESUMO

For the first time, pristine graphene can be controllably crumpled and unfolded. The mechanism for graphene is radically different than that observed for graphene oxide; a multifaced crumpled, dimpled particle morphology is seen for pristine graphene in contrast to the wrinkled, compressed surface of graphene oxide particles, showing that surface chemistry dictates nanosheet interactions during the crumpling process. The process demonstrated here utilizes a spray-drying technique to produce droplets of aqueous graphene dispersions and induce crumpling through rapid droplet evaporation. For the first time, the gradual dimensional transition of 2D graphene nanosheets to a 3D crumpled morphology in droplets is directly observed; this is imaged by a novel sample collection device inside the spray dryer itself. The degree of folding can be tailored by altering the capillary forces on the dispersed sheets during evaporation. It is also shown that the morphology of redispersed crumpled graphene powder can be controlled by solvent selection. This process is scalable, with the ability to rapidly process graphene dispersions into powders suitable for a variety of engineering applications.

17.
Phys Chem Chem Phys ; 17(14): 9383-93, 2015 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-25765970

RESUMO

Here we demonstrate through experiment and simulation the polymer-assisted dispersion of inorganic 2D layered nanomaterials such as boron nitride nanosheets (BNNSs), molybdenum disulfide nanosheets (MoS2), and tungsten disulfide nanosheets (WS2), and we show that spray drying can be used to alter such nanosheets into a crumpled morphology. Our data indicate that polyvinylpyrrolidone (PVP) can act as a dispersant for the inorganic 2D layered nanomaterials in water and a range of organic solvents; the effectiveness of our dispersion process was characterized by UV-vis spectroscopy, microscopy and dynamic light scattering. Molecular dynamics simulations confirm that PVP readily physisorbs to BNNS surfaces. Collectively, these results indicate that PVP acts as a general dispersant for nanosheets. Finally, a rapid spray drying technique was utilized to convert these 2D dispersed nanosheets into 3D crumpled nanosheets; this is the first report of 3D crumpled inorganic nanosheets of any kind. Electron microscopy images confirm that the crumpled nanosheets (1-2 µm in diameter) show a distinctive morphology with dimples on the surface as opposed to a wrinkled, compressed surface, which matches earlier simulation results. These results demonstrate the possibility of scalable production of inorganic nanosheets with tailored morphology.

18.
Proc Natl Acad Sci U S A ; 109(29): 11599-604, 2012 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-22752305

RESUMO

Dispersion of carbon nanotubes (CNTs) into liquids typically requires ultrasonication to exfoliate individuals CNTs from bundles. Experiments show that CNT length drops with sonication time (or energy) as a power law t(-m). Yet the breakage mechanism is not well understood, and the experimentally reported power law exponent m ranges from approximately 0.2 to 0.5. Here we simulate the motion of CNTs around cavitating bubbles by coupling brownian dynamics with the Rayleigh-Plesset equation. We observe that, during bubble growth, CNTs align tangentially to the bubble surface. Surprisingly, we find two dynamical regimes during the collapse: shorter CNTs align radially, longer ones buckle. We compute the phase diagram for CNT collapse dynamics as a function of CNT length, stiffness, and initial distance from the bubble nuclei and determine the transition from aligning to buckling. We conclude that, depending on their length, CNTs can break due to either buckling or stretching. These two mechanisms yield different power laws for the length decay (0.25 and 0.5, respectively), reconciling the apparent discrepancy in the experimental data.


Assuntos
Modelos Químicos , Nanotubos de Carbono/química , Ultrassom/métodos , Simulação de Dinâmica Molecular , Fatores de Tempo
19.
J Chem Phys ; 141(2): 024905, 2014 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-25028044

RESUMO

The flow-induced conformation dynamics of nanosheets are simulated using a Brownian Dynamics (BD) formulation applied to a bead-rod sheetlike molecular model. This is the first-ever use of BD to simulate flow-induced dynamics of two-dimensional structures. Using this framework, we simulate dilute suspensions of coarse-grained nanosheets and compute conformation dynamics for simple shear flow. The data show power law scaling relationships between nanosheet parameters (such as bending moduli and molecular weight) and the resulting intrinsic viscosity and conformation. For nonzero bending moduli, an effective dimension of 2.77 at equilibrium is calculated from the scaling relationship between radius of gyration and molecular weight. We also find that intrinsic viscosity varies with molecular weight with an exponent of 2.12 ± 0.23; this dependence is significantly larger than those found for linear polymers. Weak shear thinning is observed at high Weissenberg number (Wi). This simulation method provides a computational basis for developing manufacturing processes for nanosheet-derived materials by relating flow forces and nanosheet parameters to the resulting material morphology.

20.
ACS Appl Nano Mater ; 7(12): 14557-14565, 2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-38962506

RESUMO

Composites of nanocarbons and transition metal oxides combine excellent mechanical properties and high electrical conductivity with high capacitive active sites. These composites are promising for applications such as electrochemical energy conversion and storage, catalysis, and sensing. Here, we show that Joule heating can be used as a rapid out-of-oven thermal processing technique to crystallize the inorganic metal oxide matrix within a carbon nanotube fabric (CNTf) composite. We choose manganese oxide and vanadium oxide as model metal oxides and show that the Joule heating process is rapid and enables accurate control over the temperature and phase transitions. Next, we use thermogravimetric analysis and Joule heating experiments in controlled atmospheres to show that metal oxides can actually catalyze thermal degradation and reduce the thermal stability of the CNTs, which could limit processing of many oxides. We solve this by using a reducing hydrogen atmosphere to successfully extend the Joule processing window and thermal stability of the CNTf/metal oxide composite to ∼1000 °C.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA