Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nature ; 524(7563): 74-8, 2015 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-26176918

RESUMO

The prediction and synthesis of new crystal structures enable the targeted preparation of materials with desired properties. Among porous solids, this has been achieved for metal-organic frameworks, but not for the more widely applicable zeolites, where new materials are usually discovered using exploratory synthesis. Although millions of hypothetical zeolite structures have been proposed, not enough is known about their synthesis mechanism to allow any given structure to be prepared. Here we present an approach that combines structure solution with structure prediction, and inspires the targeted synthesis of new super-complex zeolites. We used electron diffraction to identify a family of related structures and to discover the structural 'coding' within them. This allowed us to determine the complex, and previously unknown, structure of zeolite ZSM-25 (ref. 8), which has the largest unit-cell volume of all known zeolites (91,554 cubic ångströms) and demonstrates selective CO2 adsorption. By extending our method, we were able to predict other members of a family of increasingly complex, but structurally related, zeolites and to synthesize two more-complex zeolites in the family, PST-20 and PST-25, with much larger cell volumes (166,988 and 275,178 cubic ångströms, respectively) and similar selective adsorption properties. Members of this family have the same symmetry, but an expanding unit cell, and are related by hitherto unrecognized structural principles; we call these family members embedded isoreticular zeolite structures.

2.
Angew Chem Int Ed Engl ; 60(10): 5125-5131, 2021 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-33332715

RESUMO

A multimodal imaging study of chabazite is used to show the distribution of and discriminate between different emissive deposits arising as a result of the detemplation process. Confocal imaging, 3D fluorescence lifetime imaging, 3D multispectral fluorescence imaging, and Raman mapping are used to show three different types of emissive behaviours each characterised by different spatial distributions, trends in lifetime, spectral signals, and Raman signatures. A notable difference is seen in the morphology of agglomerated surface deposits and larger subsurface deposits, which experience lifetime augmentation due to spatial confinement. The distribution of organic residue throughout the crystal volume is comparable to XRF mapping that shows Si enrichment on the outer edges and higher Al content through the centre, demonstrating that a fluorescence-based technique can also be used to indirectly comment on the compositional chemistry of the inorganic framework.

3.
Chem Sci ; 11(2): 447-455, 2020 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-32190265

RESUMO

The small pore zeolite Cu-SSZ-13 is an efficient material for the standard selective catalytic reduction of nitrogen oxides (NO x ) by ammonia (NH3). In this work, Cu-SSZ-13 has been studied at 250 °C under high conversion using a modulation excitation approach and analysed with phase sensitive detection (PSD). While the complementary X-ray absorption near edge structure (XANES) spectroscopy measurements showed that the experiments were performed under cyclic Cu+/Cu2+ redox, Diffuse Reflectance Infrared Fourier Transform Spectroscopy (DRIFTS) experiments provide spectroscopic evidence for previously postulated intermediates Cu-N([double bond, length as m-dash]O)-NH2 and Cu-NO3 in the NH3-SCR deNO x mechanism and for the role of [Cu2+(OH-)]+. These results therefore help in building towards a more comprehensive understanding of the reaction mechanism which to date has only been postulated in silico.

4.
Materials (Basel) ; 13(24)2020 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-33322695

RESUMO

The transient nature of the internal pore structure of particulate wall flow filters, caused by the continuous deposition of particulate matter, makes studying their flow and filtration characteristics challenging. In this article we present a new methodology and first experimental demonstration of time resolved in-situ synchrotron micro X-ray computed tomography (micro-CT) to study aerosol filtration. We directly imaged in 4D (3D plus time) pore scale deposits of TiO2 nanoparticles (nominal mean primary diameter of 25 nm) with a pixel resolution of 1.6 µm. We obtained 3D tomograms at a rate of ∼1 per minute. The combined spatial and temporal resolution allows us to observe pore blocking and filling phenomena as they occur in the filter's pore space. We quantified the reduction in filter porosity over time, from an initial porosity of 0.60 to a final porosity of 0.56 after 20 min. Furthermore, the penetration depth of particulate deposits and filtration rate was quantified. This novel image-based method offers valuable and statistically relevant insights into how the pore structure and function evolves during particulate filtration. Our data set will allow validation of simulations of automotive wall flow filters. Evolutions of this experimental design have potential for the study of a wide range of dry aerosol filters and could be directly applied to catalysed automotive wall flow filters.

5.
Top Catal ; 61(3): 175-182, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30956504

RESUMO

The small pore zeolite chabazite (SSZ-13) in the copper exchanged form is a very efficient material for the selective catalytic reduction by ammonia (NH3) of nitrogen oxides (NOx) from the exhaust of lean burn engines, typically diesel powered vehicles. The full mechanism occurring during the NH3-SCR process is currently debated with outstanding questions including the nature and role of the catalytically active sites. Time-resolved operando spectroscopic techniques have been used to provide new level of insights in to the mechanism of NH3-SCR, to show that the origin of stable Cu(I) species under SCR conditions is potentially caused by an interaction between NH3 and the Cu cations located in eight ring sites of the bulk of the zeolite and is independent of the NH3-SCR of NOx occurring at Cu six ring sites within the zeolite.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA