Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 121
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 531(7594): 371-5, 2016 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-26958833

RESUMO

Inhibitory neurons regulate the adaptation of neural circuits to sensory experience, but the molecular mechanisms by which experience controls the connectivity between different types of inhibitory neuron to regulate cortical plasticity are largely unknown. Here we show that exposure of dark-housed mice to light induces a gene program in cortical vasoactive intestinal peptide (VIP)-expressing neurons that is markedly distinct from that induced in excitatory neurons and other subtypes of inhibitory neuron. We identify Igf1 as one of several activity-regulated genes that are specific to VIP neurons, and demonstrate that IGF1 functions cell-autonomously in VIP neurons to increase inhibitory synaptic input onto these neurons. Our findings further suggest that in cortical VIP neurons, experience-dependent gene transcription regulates visual acuity by activating the expression of IGF1, thus promoting the inhibition of disinhibitory neurons and affecting inhibition onto cortical pyramidal neurons.


Assuntos
Fator de Crescimento Insulin-Like I/metabolismo , Inibição Neural , Neurônios/metabolismo , Peptídeo Intestinal Vasoativo/metabolismo , Córtex Visual/citologia , Córtex Visual/fisiologia , Animais , Feminino , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Vias Neurais , Plasticidade Neuronal , Neurônios/citologia , Células Piramidais/metabolismo , Sinapses/metabolismo , Visão Ocular/fisiologia
2.
Mol Cell Neurosci ; 80: 66-74, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28185854

RESUMO

The outgrowth of new dendritic spines is closely linked to the formation of new synapses, and is thought to be a vital component of the experience-dependent circuit plasticity that supports learning. Here, we examined the role of the RhoGEF Ephexin5 in driving activity-dependent spine outgrowth. We found that reducing Ephexin5 levels increased spine outgrowth, and increasing Ephexin5 levels decreased spine outgrowth in a GEF-dependent manner, suggesting that Ephexin5 acts as an inhibitor of spine outgrowth. Notably, we found that increased neural activity led to a proteasome-dependent reduction in the levels of Ephexin5 in neuronal dendrites, which could facilitate the enhanced spine outgrowth observed following increased neural activity. Surprisingly, we also found that Ephexin5-GFP levels were elevated on the dendrite at sites of future new spines, prior to new spine outgrowth. Moreover, lowering neuronal Ephexin5 levels inhibited new spine outgrowth in response to both global increases in neural activity and local glutamatergic stimulation of the dendrite, suggesting that Ephexin5 is necessary for activity-dependent spine outgrowth. Our data support a model in which Ephexin5 serves a dual role in spinogenesis, acting both as a brake on overall spine outgrowth and as a necessary component in the site-specific formation of new spines.


Assuntos
Espinhas Dendríticas/genética , Neurônios/classificação , Fatores de Troca de Nucleotídeo Guanina Rho/metabolismo , Sinapses/genética , Animais , Espinhas Dendríticas/fisiologia , Aminoácidos Excitatórios/farmacologia , Feminino , Ácido Glutâmico/farmacologia , Proteínas de Fluorescência Verde , Hipocampo/citologia , Técnicas In Vitro , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microscopia Confocal , Plasticidade Neuronal/fisiologia , Técnicas de Cultura de Órgãos , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Ratos , Ratos Sprague-Dawley , Fatores de Troca de Nucleotídeo Guanina Rho/genética
3.
J Cell Biol ; 99(6): 1944-54, 1984 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-6094590

RESUMO

Transformation of 6-d-old embryonic chicken retinal cells by Rous sarcoma virus (RSV) was found to cause significant changes in several cellular properties including adhesiveness, motility, and state of differentiation. The alterations in cell adhesivity were analyzed by means of specific antibodies to the calcium-independent neural cell adhesion molecule, N-CAM. In the RSV-transformed cells the amount of N-CAM present at the cell surface was significantly decreased relative to normal cells, as assessed by immunofluorescent staining, specific immunoprecipitation, and immunoblotting experiments. This decrease was reflected in a marked reduction in N-CAM-mediated adhesiveness measured in vitro. A different, calcium-dependent, adhesive system also present on neurons was not detectably altered by RSV transformation and, in contrast with previous studies on normal neurons, this adhesive system was detected without treatment by proteases. In culture, the transformed cells formed fewer and less compact colonies than the normal retinal cells. Observation of the RSV-transformed retinal cells by time-lapse cinematography confirmed the reduction in adhesiveness and also revealed that the transformed cells were more highly motile than their normal counterparts. In addition, RSV transformation appeared to alter the differentiation of the cultured retinal cells. Immunofluorescent staining studies indicated that in contrast to mature neurons, transformed neural retinal cells expressed the 34,000-mol-wt tyrosine kinase substrate and reduced amounts of a neuron-specific ganglioside recognized by monoclonal antibody A2B5. These characteristics are shared by untransformed glial cells. In double immunofluorescent staining experiments, many cells expressed both N-CAM and pp60src shortly after viral infection, which implies that the N-CAM-positive neuroepithelial cells were transformed by RSV. In addition, a highly purified population of N-CAM-positive neural retinal cells, selected using a fluorescence-activated cell sorter, was rapidly and extensively transformed by RSV at rates comparable to those of the unfractionated population. These results established that the transformed cells were largely derived from RSV-infected neuroepithelial cells rather than from a small population of retinal glial cells present in the primary culture. The findings suggest reconsideration of the possible origin of tumors classified by morphological criteria as derived from glia and raise the possibility that the normal homologue of pp60src may play a role in the commitment of neuroepithelial cells to neuronal or glial differentiation pathways.


Assuntos
Antígenos de Superfície/análise , Transformação Celular Neoplásica , Retina/citologia , Retina/embriologia , Células Ganglionares da Retina/citologia , Animais , Vírus do Sarcoma Aviário/genética , Adesão Celular , Moléculas de Adesão Celular , Agregação Celular , Diferenciação Celular , Células Cultivadas , Embrião de Galinha , Imunofluorescência , Fenótipo , Retina/imunologia
4.
J Cell Biol ; 98(2): 473-86, 1984 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-6363423

RESUMO

We examined the distribution of the 34-kilodalton (34-kD) tyrosine kinase substrate in tissues of adult and embryonic chicken using both a mouse monoclonal antibody and a rabbit polyclonal antibody raised against the affinity purified 34 kD protein. We analyzed the localization by immunoblotting of tissue extracts, by immunofluorescence staining of frozen tissue sections, and by staining sections of paraffin-embedded organs by the peroxidase antiperoxidase method. The 34-kD protein was present in a variety of cells, including epithelial cells of the skin, gastrointestinal, and respiratory tracts, as well as in fibroblasts and chondrocytes of connective tissue and mature cartilage, and endothelial cells of blood vessels. The 34-kD protein was also found in subpopulations of cells in thymus, spleen, bone marrow, and bursa. The protein was not detected in cardiac, skeletal, or smooth muscle cells, nor in epithelial cells of liver, kidney, pancreas, and several other glands. Although most neuronal cells did not contain the 34-kD protein, some localized brain regions did contain detectable amounts of this protein. The 34-kD protein was not detected in actively dividing cells of a number of tissues. Changes in the distribution of the 34-kD protein were observed during the differentiation or maturation of cells in several tissues including epithelial cells of the skin and gastrointestinal tract, fibroblasts of connective tissue, and chondroblasts.


Assuntos
Proteínas Quinases/metabolismo , Glândulas Suprarrenais/enzimologia , Animais , Diferenciação Celular , Linhagem Celular , Células Cultivadas , Embrião de Galinha , Galinhas , Epitélio/enzimologia , Eritrócitos/enzimologia , Imunofluorescência , Peso Molecular , Proteínas Tirosina Quinases , Retina/enzimologia , Pele/enzimologia , Distribuição Tecidual
5.
Science ; 268(5208): 239-47, 1995 Apr 14.
Artigo em Inglês | MEDLINE | ID: mdl-7716515

RESUMO

Neuronal activity can lead to marked increases in the concentration of cytosolic calcium, which then functions as a second messenger that mediates a wide range of cellular responses. Calcium binds to calmodulin and stimulates the activity of a variety of enzymes, including calcium-calmodulin kinases and calcium-sensitive adenylate cyclases. These enzymes transduce the calcium signal and effect short-term biological responses, such as the modification of synaptic proteins and long-lasting neuronal responses that require changes in gene expression. Recent studies of calcium signal-transduction mechanisms have revealed that, depending on the route of entry into a neuron, calcium differentially affects processes that are central to the development and plasticity of the nervous system, including activity-dependent cell survival, modulation of synaptic strength, and calcium-mediated cell death.


Assuntos
Cálcio/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Canais de Cálcio/metabolismo , Núcleo Celular/metabolismo , Regulação da Expressão Gênica , Humanos , Sistemas do Segundo Mensageiro
6.
Science ; 253(5022): 912-4, 1991 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-1715095

RESUMO

The N-methyl-D-aspartate (NMDA) receptor, a subtype of glutamate receptors, plays a key role in synaptic plasticity in the nervous system. After NMDA receptor activation, calcium entry into the postsynaptic neuron is a critical initial event. However, the subsequent mechanisms by which the NMDA receptor signal is processed are incompletely understood. Stimulation of cultured rat hippocampal cells with glutamate resulted in the rapid and transient tyrosine phosphorylation of a 39-kilodalton protein (p39). Tyrosine phosphorylation of p39 was triggered by the NMDA receptor and required an influx of Ca2+ from the extracellular medium. Because p39 was found to be highly related or identical to the microtubule-associated protein 2 kinase, the NMDA receptor signal may be processed by a sequential activation of protein kinases.


Assuntos
Fosfoproteínas/metabolismo , Receptores de N-Metil-D-Aspartato/metabolismo , Tirosina/análogos & derivados , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Células Cultivadas , Glutamatos/farmacologia , Ácido Glutâmico , Hipocampo/efeitos dos fármacos , Hipocampo/metabolismo , Immunoblotting , Cinética , Fosforilação , Fosfotirosina , Proteínas Quinases/metabolismo , Ratos , Tirosina/metabolismo
7.
Science ; 260(5105): 181-6, 1993 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-8097060

RESUMO

Calcium ions (Ca2+) act as an intracellular second messenger and can enter neurons through various ion channels. Influx of Ca2+ through distinct types of Ca2+ channels may differentially activate biochemical processes. N-Methyl-D-aspartate (NMDA) receptors and L-type Ca2+ channels, two major sites of Ca2+ entry into hippocampal neurons, were found to transmit signals to the nucleus and regulated gene transcription through two distinct Ca2+ signaling pathways. Activation of the multifunctional Ca(2+)-calmodulin-dependent protein kinase (CaM kinase) was evoked by stimulation of either NMDA receptors or L-type Ca2+ channels; however, activation of CaM kinase appeared to be critical only for propagating the L-type Ca2+ channel signal to the nucleus. Also, the NMDA receptor and L-type Ca2+ channel pathways activated transcription by means of different cis-acting regulatory elements in the c-fos promoter. These results indicate that Ca2+, depending on its mode of entry into neurons, can activate two distinct signaling pathways. Differential signal processing may provide a mechanism by which Ca2+ controls diverse cellular functions.


Assuntos
Cálcio/metabolismo , Regulação da Expressão Gênica , Hipocampo/metabolismo , Neurônios/metabolismo , Transdução de Sinais , Animais , Canais de Cálcio/metabolismo , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Células Cultivadas , Proteínas de Ligação a DNA/genética , Genes fos , Glutamatos/farmacologia , Ácido Glutâmico , Proteínas Nucleares/genética , Proteínas Quinases/metabolismo , Ratos , Receptores de N-Metil-D-Aspartato/metabolismo , Sequências Reguladoras de Ácido Nucleico , Sistemas do Segundo Mensageiro , Fator de Resposta Sérica , Fatores de Transcrição/genética , Transfecção
8.
Science ; 263(5153): 1618-23, 1994 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-7907431

RESUMO

Cultured embryonic cortical neurons from rats were used to explore mechanisms of activity-dependent neuronal survival. Cell survival was increased by the activation of voltage-sensitive calcium channels (VSCCs) but not by activation of N-methyl-D-aspartate receptors. These effects correlated with the expression of brain-derived neurotrophic factor (BDNF) induced by these two classes of calcium channels. Antibodies to BDNF (which block intracellular signaling by BDNF, but not by nerve growth factor, NT3, or NT4/5) reduced the survival of cortical neurons and reversed the VSCC-mediated increase in survival. Thus, endogenous BDNF is a trophic factor for cortical neurons whose expression is VSCC-regulated and that functions in the VSCC-dependent survival of these neurons.


Assuntos
Canais de Cálcio/fisiologia , Córtex Cerebral/citologia , Fatores de Crescimento Neural/fisiologia , Proteínas do Tecido Nervoso/fisiologia , Neurônios/citologia , Animais , Anticorpos , Fator Neurotrófico Derivado do Encéfalo , Divisão Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Embrião de Mamíferos , Glutamatos/farmacologia , Ácido Glutâmico , N-Metilaspartato/farmacologia , Fatores de Crescimento Neural/biossíntese , Fatores de Crescimento Neural/genética , Fatores de Crescimento Neural/imunologia , Proteínas do Tecido Nervoso/biossíntese , Proteínas do Tecido Nervoso/genética , Proteínas do Tecido Nervoso/imunologia , Fosforilação , Cloreto de Potássio/farmacologia , Ratos , Receptores de N-Metil-D-Aspartato/fisiologia , Transdução de Sinais
9.
Science ; 273(5277): 959-63, 1996 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-8688081

RESUMO

A signaling pathway has been elucidated whereby growth factors activate the transcription factor cyclic adenosine monophosphate response element-binding protein (CREB), a critical regulator of immediate early gene transcription. Growth factor-stimulated CREB phosphorylation at serine-133 is mediated by the RAS-mitogen-activated protein kinase (MAPK) pathway. MAPK activates CREB kinase, which in turn phosphorylates and activates CREB. Purification, sequencing, and biochemical characterization of CREB kinase revealed that it is identical to a member of the pp90(RSK) family, RSK2. RSK2 was shown to mediate growth factor induction of CREB serine-133 phosphorylation both in vitro and in vivo. These findings identify a cellular function for RSK2 and define a mechanism whereby growth factor signals mediated by RAS and MAPK are transmitted to the nucleus to activate gene expression.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Regulação da Expressão Gênica , Substâncias de Crescimento/farmacologia , Proteínas Serina-Treonina Quinases/metabolismo , Transdução de Sinais , Sequência de Aminoácidos , Animais , Linhagem Celular , Núcleo Celular/metabolismo , Fator de Crescimento Epidérmico/farmacologia , Humanos , Dados de Sequência Molecular , Fatores de Crescimento Neural/farmacologia , Células PC12 , Fosforilação , Ratos , Proteínas Quinases S6 Ribossômicas , Acetato de Tetradecanoilforbol/farmacologia , Ativação Transcricional , Transfecção , Células Tumorais Cultivadas , Proteínas ras/metabolismo
10.
Science ; 252(5011): 1427-30, 1991 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-1646483

RESUMO

The mechanism by which Ca2+ mediates gene induction in response to membrane depolarization was investigated. The adenosine 3',5'-monophosphate (cAMP) response element-binding protein (CREB) was shown to function as a Ca(2+)-regulated transcription factor and as a substrate for depolarization-activated Ca(2+)-calmodulin-dependent protein kinases (CaM kinases) I and II. CREB residue Ser133 was the major site of phosphorylation by the CaM kinases in vitro and of phosphorylation after membrane depolarization in vivo. Mutation of Ser133 impaired the ability of CREB to respond to Ca2+. These results suggest that CaM kinases may transduce electrical signals to the nucleus and that CREB functions to integrate Ca2+ and cAMP signals.


Assuntos
Cálcio/farmacologia , Proteínas de Ligação a DNA/fisiologia , Regulação da Expressão Gênica/efeitos dos fármacos , Proteínas de Saccharomyces cerevisiae , Fatores de Transcrição/fisiologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina , Mapeamento Cromossômico , Clonagem Molecular , AMP Cíclico/fisiologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico , Eletroforese em Gel de Poliacrilamida , Proteínas Fúngicas/farmacologia , Genes Reguladores/fisiologia , Humanos , Técnicas In Vitro , Fosforilação , Proteínas Quinases/farmacologia , Ratos , Proteínas Recombinantes de Fusão/farmacologia , Serina/química , Transdução de Sinais , TATA Box , Transcrição Gênica/efeitos dos fármacos , Ativação Transcricional
11.
Science ; 234(4772): 80-3, 1986 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-3749894

RESUMO

Cholinergic agonists rapidly and transiently induced transcription of the c-fos protooncogene and one or more actin genes in neuronally differentiated PC12 cells. Transcription was activated within minutes after stimulation of the nicotinic acetylcholine receptor and required an influx of extracellular Ca2+ ions through voltage-sensitive calcium channels. Nicotine activation proceeded by a different pathway from activation by nerve growth factor, whose stimulation of these genes is independent of extracellular Ca2+ ions. These findings suggest that neurotransmitters may rapidly activate specific gene transcription in nondividing neuronally differentiated cells. They also suggest a functional role for neurotransmitter induction of c-fos and actin expression in the nervous system.


Assuntos
Receptores Colinérgicos/efeitos dos fármacos , Transcrição Gênica/efeitos dos fármacos , Potenciais de Ação/efeitos dos fármacos , Neoplasias das Glândulas Suprarrenais/metabolismo , Animais , Cálcio/metabolismo , Linhagem Celular , Relação Dose-Resposta a Droga , Fatores de Crescimento Neural/farmacologia , Nicotina/farmacologia , Feocromocitoma/metabolismo , Ratos
12.
Science ; 262(5139): 1575-9, 1993 Dec 03.
Artigo em Inglês | MEDLINE | ID: mdl-7504325

RESUMO

Components of a signaling pathway that couples the ciliary neurotrophic factor (CNTF) receptor to induction of transcription were identified. CNTF stimulated the tyrosine phosphorylation of p91, a protein implicated in interferon signaling pathways, and of two proteins that are distinct but related to p91. Tyrosine-phosphorylated p91 translocated to the nucleus, where p91 and p91-related proteins bound to a DNA sequence found in promoters of genes responsive to CNTF. This DNA sequence, when inserted upstream of a reporter gene, conferred a transcriptional response to CNTF. A pathway that transduces interferon signals may therefore have a more general function in the propagation of responses to certain neurotrophic factors.


Assuntos
Núcleo Celular/metabolismo , Proteínas do Tecido Nervoso/fisiologia , Transdução de Sinais/fisiologia , Transcrição Gênica/fisiologia , Sequência de Bases , Transporte Biológico/fisiologia , Fator Neurotrófico Ciliar , Proteínas de Ligação a DNA/biossíntese , Fator 2 de Crescimento de Fibroblastos/fisiologia , Regulação da Expressão Gênica/fisiologia , Células HeLa , Humanos , Interferon-alfa/fisiologia , Interferon gama/fisiologia , Dados de Sequência Molecular , Peso Molecular , Fosfoproteínas/biossíntese , Fosfoproteínas/química , Fosfotirosina , Sequências Reguladoras de Ácido Nucleico/fisiologia , Células Tumorais Cultivadas , Tirosina/análogos & derivados , Tirosina/análise
13.
Science ; 286(5440): 785-90, 1999 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-10531066

RESUMO

During mammalian development, electrical activity promotes the calcium-dependent survival of neurons that have made appropriate synaptic connections. However, the mechanisms by which calcium mediates neuronal survival during development are not well characterized. A transcription-dependent mechanism was identified by which calcium influx into neurons promoted cell survival. The transcription factor MEF2 was selectively expressed in newly generated postmitotic neurons and was required for the survival of these neurons. Calcium influx into cerebellar granule neurons led to activation of p38 mitogen-activated protein kinase-dependent phosphorylation and activation of MEF2. Once activated, MEF2 regulated neuronal survival by stimulating MEF2-dependent gene transcription. These findings demonstrate that MEF2 is a calcium-regulated transcription factor and define a function for MEF2 during nervous system development that is distinct from previously well-characterized functions of MEF2 during muscle differentiation.


Assuntos
Proteínas de Ligação a DNA/metabolismo , Neurônios/citologia , Neurônios/metabolismo , Fatores de Transcrição/metabolismo , Transcrição Gênica , Animais , Apoptose , Cálcio/metabolismo , Canais de Cálcio Tipo L/metabolismo , Diferenciação Celular , Sobrevivência Celular , Células Cultivadas , Cerebelo/citologia , Cerebelo/metabolismo , Córtex Cerebral/citologia , Córtex Cerebral/embriologia , Córtex Cerebral/metabolismo , Proteínas de Ligação a DNA/genética , Dimerização , Imuno-Histoquímica , Fatores de Transcrição MEF2 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mitose , Mutação , Fatores de Regulação Miogênica , Fosforilação , Ratos , Transdução de Sinais , Fatores de Transcrição/genética , Transfecção , Proteínas Quinases p38 Ativadas por Mitógeno
14.
Science ; 270(5240): 1326-31, 1995 Nov 24.
Artigo em Inglês | MEDLINE | ID: mdl-7481820

RESUMO

Apoptosis plays an important role during neuronal development, and defects in apoptosis may underlie various neurodegenerative disorders. To characterize molecular mechanisms that regulate neuronal apoptosis, the contributions to cell death of mitogen-activated protein (MAP) kinase family members, including ERK (extracellular signal-regulated kinase), JNK (c-JUN NH2-terminal protein kinase), and p38, were examined after withdrawal of nerve growth factor (NGF) from rat PC-12 pheochromocytoma cells. NGF withdrawal led to sustained activation of the JNK and p38 enzymes and inhibition of ERKs. The effects of dominant-interfering or constitutively activated forms of various components of the JNK-p38 and ERK signaling pathways demonstrated that activation of JNK and p38 and concurrent inhibition of ERK are critical for induction of apoptosis in these cells. Therefore, the dynamic balance between growth factor-activated ERK and stress-activated JNK-p38 pathways may be important in determining whether a cell survives or undergoes apoptosis.


Assuntos
Apoptose , Proteínas Quinases Dependentes de Cálcio-Calmodulina/antagonistas & inibidores , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas Quinases JNK Ativadas por Mitógeno , Quinases de Proteína Quinase Ativadas por Mitógeno , Proteínas Quinases Ativadas por Mitógeno , Neurônios/citologia , Proteínas Quinases/metabolismo , Proteínas Tirosina Quinases/antagonistas & inibidores , Transdução de Sinais , Alcaloides/farmacologia , Animais , Proteínas Quinases Dependentes de Cálcio-Calmodulina/genética , Diferenciação Celular , Ativação Enzimática , Genes jun , MAP Quinase Quinase 1 , MAP Quinase Quinase 3 , MAP Quinase Quinase 4 , MAP Quinase Quinase Quinases , Proteína Quinase 1 Ativada por Mitógeno , Proteína Quinase 3 Ativada por Mitógeno , Fatores de Crescimento Neural/farmacologia , Neurônios/enzimologia , Células PC12 , Proteínas Serina-Treonina Quinases/genética , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Ratos , Estaurosporina , Sistema Nervoso Simpático/citologia , Proteínas Quinases p38 Ativadas por Mitógeno
15.
Science ; 294(5541): 333-9, 2001 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-11598293

RESUMO

Increases in the intracellular concentration of calcium ([Ca2+]i) activate various signaling pathways that lead to the expression of genes that are essential for dendritic development, neuronal survival, and synaptic plasticity. The mode of Ca2+ entry into a neuron plays a key role in determining which signaling pathways are activated and thus specifies the cellular response to Ca2+. Ca2+ influx through L-type voltage-activated channels (LTCs) is particularly effective at activating transcription factors such as CREB and MEF-2. We developed a functional knock-in technique to investigate the features of LTCs that specifically couple them to the signaling pathways that regulate gene expression. We found that an isoleucine-glutamine ("IQ") motif in the carboxyl terminus of the LTC that binds Ca2+-calmodulin (CaM) is critical for conveying the Ca2+ signal to the nucleus. Ca2+-CaM binding to the LTC was necessary for activation of the Ras/mitogen-activated protein kinase (MAPK) pathway, which conveys local Ca2+ signals from the mouth of the LTC to the nucleus. CaM functions as a local Ca2+ sensor at the mouth of the LTC that activates the MAPK pathway and leads to the stimulation of genes that are essential for neuronal survival and plasticity.


Assuntos
Canais de Cálcio Tipo L/metabolismo , Cálcio/metabolismo , Calmodulina/metabolismo , Núcleo Celular/metabolismo , Sistema de Sinalização das MAP Quinases , Neurônios/metabolismo , Motivos de Aminoácidos , Sequência de Aminoácidos , Animais , Canais de Cálcio Tipo L/química , Canais de Cálcio Tipo L/genética , Sinalização do Cálcio , Membrana Celular/metabolismo , Células Cultivadas , Córtex Cerebral/citologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Proteínas de Ligação a DNA/metabolismo , Ativação Enzimática , Regulação da Expressão Gênica , Fatores de Transcrição MEF2 , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Dados de Sequência Molecular , Mutação , Fatores de Regulação Miogênica , Fosforilação , Fosfosserina/metabolismo , Estrutura Terciária de Proteína , Ratos , Ratos Long-Evans , Fatores de Transcrição/metabolismo , Transcrição Gênica , Transfecção
16.
Science ; 260(5105): 238-41, 1993 Apr 09.
Artigo em Inglês | MEDLINE | ID: mdl-8097062

RESUMO

Mammalian circadian rhythms are regulated by a pacemaker within the suprachiasmatic nuclei (SCN) of the hypothalamus. The molecular mechanisms controlling the synchronization of the circadian pacemaker are unknown; however, immediate early gene (IEG) expression in the SCN is tightly correlated with entrainment of SCN-regulated rhythms. Antibodies were isolated that recognize the activated, phosphorylated form of the transcription factor cyclic adenosine monophosphate response element binding protein (CREB). Within minutes after exposure of hamsters to light, CREB in the SCN became phosphorylated on the transcriptional regulatory site, Ser133. CREB phosphorylation was dependent on circadian time: CREB became phosphorylated only at times during the circadian cycle when light induced IEG expression and caused phase shifts of circadian rhythms. These results implicate CREB in neuronal signaling in the hypothalamus and suggest that circadian clock gating of light-regulated molecular responses in the SCN occurs upstream of phosphorylation of CREB.


Assuntos
Ritmo Circadiano , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Luz , Núcleo Supraquiasmático/metabolismo , Sequência de Aminoácidos , Animais , Sequência de Bases , Colforsina/farmacologia , Cricetinae , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/imunologia , Escuridão , Regulação da Expressão Gênica , Genes fos , Glutamatos/farmacologia , Ácido Glutâmico , Dados de Sequência Molecular , Células PC12 , Fosforilação , Cloreto de Potássio/farmacologia , Núcleo Supraquiasmático/efeitos dos fármacos
17.
Science ; 245(4923): 1234-6, 1989 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-2506639

RESUMO

Gene targeting via homologous recombination-mediated disruption in murine embryonic stem (ES) cells has been described for a number of different genes expressed in these cells; it has not been reported for any nonexpressed genes. Pluripotent stem cell lines were isolated with homologously recombined insertions at three different loci: c-fos, which is expressed at a low level in ES cells, and two genes, adipsin and adipocyte P2 (aP2), which are transcribed specifically in adipose cells and are not expressed at detectable levels in ES cells. The frequencies at which homologous recombination events occurred did not correlate with levels of expression of the targeted genes, but did occur at rates comparable to those previously reported for genes that are actively expressed in ES cells. Injection of successfully targeted cells into mouse blastocysts resulted in the formation of chimeric mice. These studies demonstrate the feasibility of altering genes in ES cells that are expressed in a tissue-specific manner in the mouse, in order to study their function at later developmental stages.


Assuntos
Proteínas de Transporte/genética , Regulação da Expressão Gênica , Proteínas de Neoplasias , Proteínas do Tecido Nervoso , Proteínas Proto-Oncogênicas/genética , Recombinação Genética , Serina Endopeptidases/genética , Células-Tronco/metabolismo , Tecido Adiposo/citologia , Animais , Northern Blotting , Southern Blotting , Proteínas de Transporte/biossíntese , Linhagem Celular , Quimera , Fator D do Complemento , DNA Recombinante , Proteínas de Ligação a DNA/biossíntese , Proteínas de Ligação a DNA/genética , Proteína 7 de Ligação a Ácidos Graxos , Proteínas de Ligação a Ácido Graxo , Ácidos Graxos/metabolismo , Vetores Genéticos , Camundongos , Proteínas Proto-Oncogênicas/biossíntese , Proteínas Proto-Oncogênicas c-fos , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Transfecção
18.
Science ; 286(5443): 1358-62, 1999 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-10558990

RESUMO

A mechanism by which the Ras-mitogen-activated protein kinase (MAPK) signaling pathway mediates growth factor-dependent cell survival was characterized. The MAPK-activated kinases, the Rsks, catalyzed the phosphorylation of the pro-apoptotic protein BAD at serine 112 both in vitro and in vivo. The Rsk-induced phosphorylation of BAD at serine 112 suppressed BAD-mediated apoptosis in neurons. Rsks also are known to phosphorylate the transcription factor CREB (cAMP response element-binding protein) at serine 133. Activated CREB promoted cell survival, and inhibition of CREB phosphorylation at serine 133 triggered apoptosis. These findings suggest that the MAPK signaling pathway promotes cell survival by a dual mechanism comprising the posttranslational modification and inactivation of a component of the cell death machinery and the increased transcription of pro-survival genes.


Assuntos
Apoptose , Sobrevivência Celular , Sistema de Sinalização das MAP Quinases , Neurônios/citologia , Proteínas Serina-Treonina Quinases , Proteínas Quinases S6 Ribossômicas/metabolismo , Transcrição Gênica , Animais , Fator Neurotrófico Derivado do Encéfalo/farmacologia , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Células Cultivadas , Cerebelo/citologia , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Flavonoides/farmacologia , Fator de Crescimento Insulin-Like I/farmacologia , MAP Quinase Quinase 1 , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Proteínas Quinases Ativadas por Mitógeno/antagonistas & inibidores , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Mutação , Neurônios/metabolismo , Fosforilação , Fosfosserina/metabolismo , Ratos , Ratos Long-Evans , Proteínas Recombinantes de Fusão/metabolismo , Proteínas Quinases S6 Ribossômicas/genética , Transfecção , Proteína de Morte Celular Associada a bcl , Proteínas ras/metabolismo
19.
Science ; 277(5326): 693-6, 1997 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-9235893

RESUMO

The c-Jun amino-terminal kinase (JNK) is a member of the stress-activated group of mitogen-activated protein (MAP) kinases that are implicated in the control of cell growth. A murine cytoplasmic protein that binds specifically to JNK [the JNK interacting protein-1 (JIP-1)] was characterized and cloned. JIP-1 caused cytoplasmic retention of JNK and inhibition of JNK-regulated gene expression. In addition, JIP-1 suppressed the effects of the JNK signaling pathway on cellular proliferation, including transformation by the Bcr-Abl oncogene. This analysis identifies JIP-1 as a specific inhibitor of the JNK signal transduction pathway and establishes protein targeting as a mechanism that regulates signaling by stress-activated MAP kinases.


Assuntos
Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Proteínas de Transporte/metabolismo , Proteínas Quinases Ativadas por Mitógeno , Transdução de Sinais , Fator 2 Ativador da Transcrição , Animais , Células COS , Proteínas de Transporte/química , Núcleo Celular/metabolismo , Transformação Celular Neoplásica , Células Cultivadas , Clonagem Molecular , Proteína de Ligação ao Elemento de Resposta ao AMP Cíclico/metabolismo , Citoplasma/metabolismo , Proteínas de Fusão bcr-abl/metabolismo , Regulação da Expressão Gênica , Proteínas Quinases JNK Ativadas por Mitógeno , Proteína Quinase 9 Ativada por Mitógeno , Dados de Sequência Molecular , Fosforilação , Proteínas Quinases/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Proteínas Recombinantes de Fusão/metabolismo , Fatores de Transcrição/metabolismo , Ativação Transcricional , Transfecção
20.
Science ; 275(5300): 661-5, 1997 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-9005851

RESUMO

A signaling pathway was delineated by which insulin-like growth factor 1 (IGF-1) promotes the survival of cerebellar neurons. IGF-1 activation of phosphoinositide 3-kinase (PI3-K) triggered the activation of two protein kinases, the serine-threonine kinase Akt and the p70 ribosomal protein S6 kinase (p70(S6K)). Experiments with pharmacological inhibitors, as well as expression of wild-type and dominant-inhibitory forms of Akt, demonstrated that Akt but not p70(S6K) mediates PI3-K-dependent survival. These findings suggest that in the developing nervous system, Akt is a critical mediator of growth factor-induced neuronal survival.


Assuntos
Apoptose , Fator de Crescimento Insulin-Like I/farmacologia , Neurônios/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Proto-Oncogênicas/metabolismo , Transdução de Sinais , Androstadienos/farmacologia , Animais , Apoptose/efeitos dos fármacos , Proteínas Quinases Dependentes de Cálcio-Calmodulina/metabolismo , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Cerebelo/citologia , Cromonas/farmacologia , Ativação Enzimática , Inibidores Enzimáticos/farmacologia , Insulina/farmacologia , Morfolinas/farmacologia , Neurônios/efeitos dos fármacos , Neurônios/enzimologia , Fosfatidilinositol 3-Quinases , Fosfotransferases (Aceptor do Grupo Álcool)/metabolismo , Proteínas Proto-Oncogênicas/química , Proteínas Proto-Oncogênicas/genética , Proteínas Proto-Oncogênicas c-akt , Ratos , Proteínas Quinases S6 Ribossômicas , Transfecção , Wortmanina
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA