RESUMO
In eukaryotes, many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition through intramolecular electrostatic interaction with functional domains. In this work, we investigated the impacts of D/E repeats on the target DNA search kinetics for the high-mobility group box 1 (HMGB1) protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats of varied lengths. Our experimental data showed that D/E repeats of particular lengths can accelerate the target association in the overwhelming presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations showed that the autoinhibited proteins can bind to DNA and transition into the uninhibited complex with DNA through an electrostatically driven induced-fit process. In conjunction with the CGMD simulations, our kinetic model can explain how D/E repeats can accelerate the target association process in the presence of decoys. This study illuminates an unprecedented role of the negatively charged IDRs in the target search process.
Many DNA/RNA-binding proteins possess intrinsically disordered regions (IDRs) with large negative charge, some of which involve a consecutive sequence of aspartate (D) or glutamate (E) residues. We refer to them as D/E repeats. The functional role of D/E repeats is not well understood, though some of them are known to cause autoinhibition. Here, using the HMGB1 protein and the artificial protein constructs of the Antp homeodomain fused with D/E repeats, we demonstrate that D/E repeats can accelerate the target search process in the presence of non-functional high-affinity ligands ('decoys'). Our coarse-grained molecular dynamics (CGMD) simulations and kinetic model provide mechanistic insight into this acceleration. Our current study illuminates an unprecedented role of the negatively charged IDRs.
Assuntos
Proteínas de Ligação a DNA , Proteínas Intrinsicamente Desordenadas , DNA/metabolismo , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Proteínas Intrinsicamente Desordenadas/química , Proteínas Intrinsicamente Desordenadas/metabolismo , Simulação de Dinâmica Molecular , Cinética , Proteínas de Homeodomínio/química , Proteínas de Homeodomínio/genética , Proteínas de Homeodomínio/metabolismo , Biologia SintéticaRESUMO
DNA mismatch repair (MMR) is an important postreplication process that eliminates mispaired or unpaired nucleotides to ensure genomic replication fidelity. In humans, Msh2-Msh6 and Msh2-Msh3 are the two mismatch repair initiation factors that recognize DNA lesions. While X-ray crystal structures exist for these proteins in complex with DNA lesions, little is known about their structures during the initial search along nonspecific double-stranded DNA, because they are short-lived and difficult to determine experimentally. In this study, various computational approaches were used to sidestep these difficulties. All-atom and coarse-grained simulations based on the crystal structures of Msh2-Msh3 and Msh2-Msh6 showed no translation along the DNA, suggesting that the initial search conformation differs from the lesion-bound crystal structure. We modeled probable search-mode structures of MSH proteins and showed, using coarse-grained molecular dynamics simulations, that they can perform rotation-coupled diffusion on DNA, which is a suitable and efficient search mechanism for their function and one predicted earlier by fluorescence resonance energy transfer and fluorescence microscopy studies. This search mechanism is implemented by electrostatic interactions among the mismatch-binding domain (MBD), the clamp domains, and the DNA backbone. During simulations, their diffusion rate did not change significantly with an increasing salt concentration, which is consistent with observations from experimental studies. When the gap between their DNA-binding clamps was increased, Msh2-Msh3 diffused mostly via the clamp domains while Msh2-Msh6 still diffused using the MBD, reproducing the experimentally measured lower diffusion coefficient of Msh2-Msh6. Interestingly, Msh2-Msh3 was capable of dissociating from the DNA, whereas Msh2-Msh6 always diffused on the DNA duplex. This is consistent with the experimental observation that Msh2-Msh3, unlike Msh2-Msh6, can overcome obstacles such as nucleosomes. Our models provide a molecular picture of the different mismatch search mechanisms undertaken by Msh2-Msh6 and Msh2-Msh3, despite the similarity of their structures.
Assuntos
Reparo de Erro de Pareamento de DNA , Proteínas de Ligação a DNA/metabolismo , DNA/metabolismo , Proteína 2 Homóloga a MutS/metabolismo , Proteína 3 Homóloga a MutS/metabolismo , Proteínas de Ligação a DNA/química , Difusão , Humanos , Simulação de Dinâmica Molecular , Proteína 2 Homóloga a MutS/química , Proteína 3 Homóloga a MutS/química , Ligação Proteica , Conformação Proteica , Eletricidade EstáticaRESUMO
Several DNA-binding proteins, such as topoisomerases, helicases and sliding clamps, have a toroidal (i.e. ring) shape that topologically traps DNA, with this quality being essential to their function. Many DNA-binding proteins that function, for example, as transcription factors or enzymes were shown to be able to diffuse linearly (i.e. slide) along DNA during the search for their target binding sites. The protein's sliding properties and ability to search DNA, which often also involves hopping and dissociation, are expected to be different when it encircles the DNA. In this study, we explored the linear diffusion of four ring-shaped proteins of very similar structure: three sliding clamps (PCNA, ß-clamp, and the gp45) and the 9-1-1 protein, with a particular focus on PCNA. Coarse-grained molecular dynamics simulations were performed to decipher the sliding mechanism adopted by these ring-shaped proteins and to determine how the molecular properties of the inner and outer ring govern its search speed. We designed in silico variants to dissect the contributions of ring geometry and electrostatics to the sliding speed of ring-shaped proteins along DNA. We found that the toroidal proteins diffuse when they are tilted relative to the DNA axis and able to rotate during translocation, but that coupling between rotation and translocation is quite weak. Their diffusion speed is affected by the shape of the inner ring and, to a lesser extent, by its electrostatic properties. However, breaking the symmetry of the electrostatic potential can result in deviation of the DNA from the center of the ring and cause slower linear diffusion. The findings are discussed in light of earlier computational and experimental studies on the sliding of clamps.
Assuntos
DNA/química , Antígeno Nuclear de Célula em Proliferação/química , Difusão , Simulação de Dinâmica Molecular , Rotação , Eletricidade Estática , Transativadores/químicaRESUMO
PEGylation of protein side chains has been used for more than 30 years to enhance the pharmacokinetic properties of protein drugs. However, there are no structure- or sequence-based guidelines for selecting sites that provide optimal PEG-based pharmacokinetic enhancement with minimal losses to biological activity. We hypothesize that globally optimal PEGylation sites are characterized by the ability of the PEG oligomer to increase protein conformational stability; however, the current understanding of how PEG influences the conformational stability of proteins is incomplete. Here we use the WW domain of the human protein Pin 1 (WW) as a model system to probe the impact of PEG on protein conformational stability. Using a combination of experimental and theoretical approaches, we develop a structure-based method for predicting which sites within WW are most likely to experience PEG-based stabilization, and we show that this method correctly predicts the location of a stabilizing PEGylation site within the chicken Src SH3 domain. PEG-based stabilization in WW is associated with enhanced resistance to proteolysis, is entropic in origin, and likely involves disruption by PEG of the network of hydrogen-bound solvent molecules that surround the protein. Our results highlight the possibility of using modern site-specific PEGylation techniques to install PEG oligomers at predetermined locations where PEG will provide optimal increases in conformational and proteolytic stability.
Assuntos
Polietilenoglicóis/química , Estabilidade Proteica , Proteínas/química , Sequência de Aminoácidos , Sítios de Ligação , Dados de Sequência Molecular , Conformação Proteica , TermodinâmicaRESUMO
The use of whole insect larvae as a source of recombinant proteins offers a more cost-effective method of producing large quantities of human proteins than conventional cell-culture approaches. Human carboxylesterase 1 has been produced in and isolated from whole Trichoplusia ni larvae. The recombinant protein was crystallized and its structure was solved to 2.2 resolution. The results indicate that the larvae-produced enzyme is essentially identical to that isolated from cultured Sf21 cells, supporting the use of this expression system to produce recombinant enzymes for crystallization studies.
Assuntos
Carboxilesterase/química , Animais , Carboxilesterase/genética , Carboxilesterase/isolamento & purificação , Carboxilesterase/metabolismo , Linhagem Celular , Humanos , Hidrólise , Larva/genética , Larva/metabolismo , Modelos Moleculares , Mariposas/genética , Mariposas/metabolismo , Estrutura Quaternária de Proteína , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/isolamento & purificação , Proteínas Recombinantes/metabolismoRESUMO
DNA-binding proteins rely on linear diffusion along the longitudinal DNA axis, supported by their nonspecific electrostatic affinity for DNA, to search for their target recognition sites. One may therefore expect that the ability to engage in linear diffusion along DNA is universal to all DNA-binding proteins, with the detailed biophysical characteristics of that diffusion differing between proteins depending on their structures and functions. One key question is whether the linear diffusion mechanism is defined by translation coupled with rotation, a mechanism that is often termed sliding. We conduct coarse-grained and atomistic molecular dynamics simulations to investigate the minimal requirements for protein sliding along DNA. We show that coupling, while widespread, is not universal. DNA-binding proteins that slide along DNA transition to uncoupled translation-rotation (i.e., hopping) at higher salt concentrations. Furthermore, and consistently with experimental reports, we find that the sliding mechanism is the less dominant mechanism for some DNA-binding proteins, even at low salt concentrations. In particular, the toroidal PCNA protein is shown to follow the hopping rather than the sliding mechanism.
Assuntos
DNA , Simulação de Dinâmica Molecular , DNA/metabolismo , Proteínas de Ligação a DNA/metabolismo , Difusão , Ligação Proteica , Eletricidade EstáticaRESUMO
Highly negatively charged segments containing only aspartate or glutamate residues ("D/E repeats") are found in many eukaryotic proteins. For example, the C-terminal 30 residues of the HMGB1 protein are entirely D/E repeats. Using nuclear magnetic resonance (NMR), fluorescence, and computational approaches, we investigated how the D/E repeats causes the autoinhibition of HMGB1 against its specific binding to cisplatin-modified DNA. By varying ionic strength in a wide range (40-900 mM), we were able to shift the conformational equilibrium between the autoinhibited and uninhibited states toward either of them to the full extent. This allowed us to determine the macroscopic and microscopic equilibrium constants for the HMGB1 autoinhibition at various ionic strengths. At a macroscopic level, a model involving the autoinhibited and uninhibited states can explain the salt concentration-dependent binding affinity data. Our data at a microscopic level show that the D/E repeats and other parts of HMGB1 undergo electrostatic fuzzy interactions, each of which is weaker than expected from the macroscopic autoinhibitory effect. This discrepancy suggests that the multivalent nature of the fuzzy interactions enables strong autoinhibition at a macroscopic level despite the relatively weak intramolecular interaction at each site. Both experimental and computational data suggest that the D/E repeats interact preferentially with other intrinsically disordered regions (IDRs) of HMGB1. We also found that mutations mimicking post-translational modifications relevant to nuclear export of HMGB1 can moderately modulate DNA-binding affinity, possibly by impacting the autoinhibition. This study illuminates a functional role of the fuzzy interactions of D/E repeats.
Assuntos
Proteína HMGB1/antagonistas & inibidores , Proteína HMGB1/metabolismo , Proteínas Intrinsicamente Desordenadas/antagonistas & inibidores , Proteínas Intrinsicamente Desordenadas/metabolismo , Eletricidade Estática , Sítios de Ligação , DNA/química , DNA/metabolismo , Proteína HMGB1/química , Humanos , Proteínas Intrinsicamente Desordenadas/química , Modelos Moleculares , Simulação de Dinâmica Molecular , Ressonância Magnética Nuclear Biomolecular , Ligação Proteica , Conformação ProteicaRESUMO
Lassa virus (LASV) is a notorious human pathogen in West Africa. Its class I trimeric spike complex displays a distinct architecture, and its cell entry mechanism involves unique attributes not shared by other related viruses. We determined the crystal structure of the GP2 fusion glycoprotein from the spike complex of LASV (GP2LASV) in its post-fusion conformation. GP2LASV adopts a canonical helical bundle configuration similarly to other viruses in its family. The core packing of GP2LASV, however, is more organized compared to GP2 from other viruses reducing the formation of internal hydrophobic cavities. We demonstrate a link between the formation of such unfavorable hydrophobic cavities and the efficiencies of membrane fusion and cell entry. Our study suggests that LASV has evolved a more efficient membrane fusogen compared to other viruses from its family by optimizing the post-fusion configuration of its GP2 module.
Assuntos
Febre Lassa/virologia , Vírus Lassa/fisiologia , Internalização do Vírus , Animais , Linhagem Celular , Cristalografia por Raios X , Células HEK293 , Humanos , Febre Lassa/metabolismo , Vírus Lassa/química , Fusão de Membrana , Simulação de Dinâmica Molecular , Conformação ProteicaRESUMO
The X-ray crystal structures were solved for complexes with Torpedo californica acetylcholinesterase of two bivalent tacrine derivative compounds in which the two tacrine rings were separated by 5- and 7-carbon spacers. The derivative with the 7-carbon spacer spans the length of the active-site gorge, making sandwich interactions with aromatic residues both in the catalytic anionic site (Trp84 and Phe330) at the bottom of the gorge and at the peripheral anionic site near its mouth (Tyr70 and Trp279). The derivative with the 5-carbon spacer interacts in a similar manner at the bottom of the gorge, but the shorter tether precludes a sandwich interaction at the peripheral anionic site. Although the upper tacrine group does interact with Trp279, it displaces the phenyl residue of Phe331, thus causing a major rearrangement in the Trp279-Ser291 loop. The ability of this inhibitor to induce large-scale structural changes in the active-site gorge of acetylcholinesterase has significant implications for structure-based drug design because such conformational changes in the target enzyme are difficult to predict and to model.
Assuntos
Acetilcolinesterase/química , Alcenos/química , Inibidores da Colinesterase/química , Modelos Moleculares , Tacrina/química , Animais , Sítios de Ligação , Cristalização , Cristalografia por Raios X , Dimerização , Estrutura Molecular , Conformação Proteica , TorpedoRESUMO
Protein metal binding sites in the pre-bound (apo) state, and their rearrangements upon metal binding were not analyzed previously at a database scale. Such a study may provide valuable information for metal binding site prediction and design. A high resolution, nonredundant dataset of 210 metal binding sites was created, containing all available representatives of apo-holo pairs for the most populated metals in the PDB. More than 40% of the sites underwent rearrangements upon metal binding. In 30 cases rearrangements involved the backbone. The tendency for side-chain rearrangement inversely correlates with the number of first-shell residues. Analysis of side-chain reorientations as a result of metal binding showed that in 95% of the rigid-backbone binding sites at most one side chain moved. Thus, in general, part of the first coordination shell is already in place in the pre-bound form. The frequencies of side-chain reorientation directly correlated with metal ligand flexibility and solvent accessibility in the apo state.
Assuntos
Bases de Dados de Proteínas , Metaloproteínas/química , Metaloproteínas/metabolismo , Metais/metabolismo , Proteínas/química , Proteínas/metabolismo , Apoproteínas/química , Apoproteínas/metabolismo , Sítios de Ligação , Cálcio/metabolismo , Enzimas/química , Enzimas/metabolismo , Cinética , Metais/química , Conformação Proteica , Solventes , Zinco/metabolismoRESUMO
We have previously isolated sphericase (Sph), an extracellular mesophilic serine protease produced by Bacillus sphaericus. The Sph amino acid sequence is highly homologous to two cold-adapted subtilisins from Antarctic bacilli S39 and S41 (76% and 74% identity, respectively). Sph is calcium-dependent, 310 amino acid residues long and has optimal activity at pH 10.0. S41 and S39 have not as yet been structurally analysed. In the present work, we determined the crystal structure of Sph by the Eu/multiwavelength anomalous diffraction method. The structure was extended to 0.93A resolution and refined to a crystallographic R-factor of 9.7%. The final model included all 310 amino acid residues, one disulfide bond, 679 water molecules and five calcium ions. Although Sph is a mesophilic subtilisin, its amino acid sequence is similar to that of the psychrophilic subtilisins, which suggests that the crystal structure of these subtilisins is very similar. The presence of five calcium ions bound to a subtilisin molecule, as found here for Sph, has not been reported for the subtilisin superfamily. None of these calcium-binding sites correlates with the well-known high-affinity calcium-binding site (site I or site A), and only one site has been described previously. This calcium-binding pattern suggests that a reduction in the flexibility of the surface loops of Sph by calcium binding may be responsible for its adaptation to mesophilic organisms.
Assuntos
Bacillus/enzimologia , Serina Endopeptidases/fisiologia , Sequência de Aminoácidos , Sítios de Ligação , Cálcio/química , Cálcio/metabolismo , Temperatura Baixa , Cristalografia por Raios X , Bases de Dados como Assunto , Concentração de Íons de Hidrogênio , Íons , Modelos Químicos , Modelos Moleculares , Dados de Sequência Molecular , Conformação Proteica , Homologia de Sequência de Aminoácidos , Serina Endopeptidases/química , Subtilisina/químicaRESUMO
Glycosylation plays not only a functional role but can also modify the biophysical properties of the modified protein. Usually, natural glycosylation results in protein stabilization; however, in vitro and in silico studies showed that sometimes glycosylation results in thermodynamic destabilization. Here, we applied coarse-grained and all-atom molecular dynamics simulations to understand the mechanism underlying the loss of stability of the MM1 protein by glycosylation. We show that the origin of the destabilization is a conformational distortion of the protein caused by the interaction of the monosaccharide with the protein surface. Though glycosylation creates new short-range glycan-protein interactions that stabilize the conjugated protein, it breaks long-range protein-protein interactions. This has a destabilizing effect because the probability of long- and short-range interactions forming differs between the folded and unfolded states. The destabilization originates not from simple loss of interactions but due to a trade-off between the short- and long-range interactions.
Assuntos
Príons/química , Termodinâmica , Glicosilação , Simulação de Dinâmica Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Dobramento de Proteína , Estabilidade Proteica , Propriedades de SuperfícieRESUMO
The structure of Torpedo californica acetylcholinesterase is examined in complex with several inhibitors that are either in use or under development for treating Alzheimer's disease. The noncovalent inhibitors vary greatly in their structures and bind to different sites of the enzyme, offering many different starting points for future drug design.
Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/efeitos dos fármacos , Doença de Alzheimer/tratamento farmacológico , Inibidores da Colinesterase/química , Inibidores da Colinesterase/farmacologia , Desenho de Fármacos , Acetilcolinesterase/metabolismo , Doença de Alzheimer/enzimologia , Doença de Alzheimer/fisiopatologia , Animais , Sítios de Ligação/efeitos dos fármacos , Sítios de Ligação/fisiologia , Ligação Competitiva/efeitos dos fármacos , Ligação Competitiva/fisiologia , Humanos , Modelos Moleculares , Conformação Molecular , Estrutura MolecularAssuntos
Escherichia coli K12/enzimologia , Proteínas de Escherichia coli/química , Hidroliases/química , Sequência de Aminoácidos , Sítios de Ligação , Cristalografia por Raios X , Dimerização , Proteínas de Escherichia coli/genética , Proteínas de Escherichia coli/isolamento & purificação , Proteínas de Escherichia coli/metabolismo , Hidroliases/genética , Hidroliases/isolamento & purificação , Hidroliases/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Ligação Proteica , Dobramento de Proteína , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Homologia de Sequência de Aminoácidos , SolubilidadeRESUMO
Selective estrogen receptor modulators, such as 17ß-estradiol derivatives bound to metal complexes, have been synthesized as targeted probes for the diagnosis and treatment of breast cancer. Here, we report the detailed 3D structure of estrogen receptor α ligand-binding domain (ERα-LBD) bound with a novel estradiol-derived metal complex, estradiol-pyridine tetra acetate europium(III), at 2.6 Å resolution. This structure provides important information pertinent to the design of novel functional ERα targeted probes for clinical applications.
Assuntos
Quelantes/química , Estradiol/química , Receptor alfa de Estrogênio/antagonistas & inibidores , Metais/química , Moduladores Seletivos de Receptor Estrogênico/farmacologia , Química Farmacêutica/métodos , Cristalografia por Raios X/métodos , Dimerização , Európio/química , Humanos , Ligantes , Modelos Químicos , Conformação Molecular , Ligação Proteica , Estrutura Terciária de Proteína , Moduladores Seletivos de Receptor Estrogênico/químicaRESUMO
A bis-(-)-nor-meptazinol derivative in which the two meptazinol rings are linked by a nonamethylene spacer is a novel acetylcholinesterase inhibitor that inhibits both catalytic activity and Abeta peptide aggregation. The crystal structure of its complex with Torpedo californica acetylcholinesterase was determined to 2.7 A resolution. The ligand spans the active-site gorge, with one nor-meptazinol moiety bound at the "anionic" subsite of the active site, disrupting the catalytic triad by forming a hydrogen bond with His440N(epsilon2), which is hydrogen-bonded to Ser200O(gamma) in the native enzyme. The second nor-meptazinol binds at the peripheral "anionic" site at the gorge entrance. A number of GOLD models of the complex, using both native TcAChE and the protein template from the crystal structure of the bis-(-)-nor-meptazinol/TcAChE complex, bear higher similarity to the X-ray structure than a previous model obtained using the mouse enzyme structure. These findings may facilitate rational design of new meptazinol-based acetylcholinesterase inhibitors.
Assuntos
Acetilcolinesterase/química , Meptazinol/análogos & derivados , Meptazinol/química , Modelos Moleculares , Animais , Domínio Catalítico , Cristalografia por Raios X , Ligação de Hidrogênio , Camundongos , Estrutura Molecular , TorpedoRESUMO
Organophosphate compounds (OP) are potent inhibitors of acetylcholinesterases (AChEs) and can cause lethal poisoning in humans. Inhibition of AChEs by the OP soman involves phosphonylation of the catalytic serine, and subsequent dealkylation produces a form known as the "aged" enzyme. The nonaged form can be reactivated to a certain extent by nucleophiles, such as pralidoxime (2-PAM), whereas aged forms of OP-inhibited AChEs are totally resistant to reactivation. Here, we solved the X-ray crystal structures of AChE from Torpedo californica (TcAChE) conjugated with soman before and after aging. The absolute configuration of the soman stereoisomer adduct in the nonaged conjugate is P(S)C(R). A structural reorientation of the catalytic His440 side chain was observed during the aging process. Furthermore, the crystal structure of the ternary complex of the aged conjugate with 2-PAM revealed that the orientation of the oxime function does not permit nucleophilic attack on the phosphorus atom, thus providing a plausible explanation for its failure to reactivate the aged soman/AChE conjugate. Together, these three crystal structures provide an experimental basis for the design of new reactivators.
Assuntos
Acetilcolinesterase/química , Acetilcolinesterase/metabolismo , Inibidores da Colinesterase/química , Inibidores da Colinesterase/metabolismo , Compostos de Pralidoxima/química , Soman/química , Soman/metabolismo , Animais , Domínio Catalítico , Inibidores da Colinesterase/farmacologia , Cristalografia por Raios X , Remoção de Radical Alquila , Ativação Enzimática/efeitos dos fármacos , Humanos , Cinética , Modelos Moleculares , Compostos de Pralidoxima/farmacologia , Soman/farmacologia , Torpedo , Água/química , Água/metabolismoRESUMO
Microbatch crystallization under oil is a powerful procedure for obtaining protein crystals. Using this method, aqueous protein solutions are dispensed under liquid oil, and water evaporates through the layer of oil, with a concomitant increase in the concentrations of both protein and precipitant until the nucleation point is reached. A technique is presented for regulating the rate of water evaporation, which permits fine tuning of the crystallization conditions as well as preventing complete desiccation of the drops in the microbatch crystallization trays.
RESUMO
Oxidoreductases belonging to the protein disulfide isomerase (PDI) family promote proper disulfide bond formation in substrate proteins in the endoplasmic reticulum. In plants and metazoans, new family members continue to be identified and assigned to various functional niches. PDI-like proteins typically contain tandem thioredoxin-fold domains. The limited information available suggested that the relative orientations of these domains may be quite uniform across the family, and structural models based on this assumption are appearing. However, the X-ray crystal structure of the yeast PDI family protein Mpd1p, described here, demonstrates the radically different domain orientations and surface properties achievable with multiple copies of the thioredoxin fold. A comparison of Mpd1p with yeast Pdi1p expands our perspective on the contexts in which redox-active motifs are presented in the PDI family.
Assuntos
Isomerases de Dissulfetos de Proteínas/química , Proteínas Repressoras/fisiologia , Proteínas de Saccharomyces cerevisiae/fisiologia , Motivos de Aminoácidos , Sequência de Aminoácidos , Cristalografia por Raios X/métodos , Dissulfetos , Retículo Endoplasmático/química , Retículo Endoplasmático/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Oxirredução , Ligação Proteica , Conformação Proteica , Isomerases de Dissulfetos de Proteínas/fisiologia , Dobramento de Proteína , Estrutura Terciária de Proteína , Proteínas Repressoras/química , Proteínas de Saccharomyces cerevisiae/química , Tiorredoxinas/químicaRESUMO
Gaucher disease is caused by mutations in the gene encoding acid beta-glucosidase (GlcCerase), resulting in glucosylceramide (GlcCer) accumulation. The only currently available orally administered treatment for Gaucher disease is N-butyl-deoxynojirimycin (Zavesca, NB-DNJ), which partially inhibits GlcCer synthesis, thus reducing levels of GlcCer accumulation. NB-DNJ also acts as a chemical chaperone for GlcCerase, although at a different concentration than that required to completely inhibit GlcCer synthesis. We now report the crystal structures, at 2A resolution, of complexes of NB-DNJ and N-nonyl-deoxynojirimycin (NN-DNJ) with recombinant human GlcCerase, expressed in cultured plant cells. Both inhibitors bind at the active site of GlcCerase, with the imino sugar moiety making hydrogen bonds to side chains of active site residues. The alkyl chains of NB-DNJ and NN-DNJ are oriented toward the entrance of the active site where they undergo hydrophobic interactions. Based on these structures, we make a number of predictions concerning (i) involvement of loops adjacent to the active site in the catalytic process, (ii) the nature of nucleophilic attack by Glu-340, and (iii) the role of a conserved water molecule located in a solvent cavity adjacent to the active site. Together, these results have significance for understanding the mechanism of action of GlcCerase and the mode of GlcCerase chaperoning by imino sugars.