Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Phys Biol ; 20(5)2023 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-37285862

RESUMO

The emergence of large-scale structures in biological systems, and in particular the formation of lines of hierarchy, is observed at many scales, from collections of cells to groups of insects to herds of animals. Motivated by phenomena in chemotaxis and phototaxis, we present a new class of alignment models that exhibit alignment into lines. The spontaneous formation of such 'fingers' can be interpreted as the emergence of leaders and followers in a system of identically interacting agents. Various numerical examples are provided, which demonstrate emergent behaviors similar to the 'fingering' phenomenon observed in some phototaxis and chemotaxis experiments; this phenomenon is generally known to be a challenging pattern for existing models to capture. A novel protocol for pairwise interactions provides a fundamental alignment mechanism by which agents may form lines of hierarchy across a wide range of biological systems.


Assuntos
Quimiotaxia , Insetos , Animais , Movimento (Física) , Modelos Biológicos
2.
J Theor Biol ; 510: 110539, 2021 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-33242489

RESUMO

Motivated by the current COVID-19 epidemic, this work introduces an epidemiological model in which separate compartments are used for susceptible and asymptomatic "socially distant" populations. Distancing directives are represented by rates of flow into these compartments, as well as by a reduction in contacts that lessens disease transmission. The dynamical behavior of this system is analyzed, under various different rate control strategies, and the sensitivity of the basic reproduction number to various parameters is studied. One of the striking features of this model is the existence of a critical implementation delay (CID) in issuing distancing mandates: while a delay of about two weeks does not have an appreciable effect on the peak number of infections, issuing mandates even slightly after this critical time results in a far greater incidence of infection. Thus, there is a nontrivial but tight "window of opportunity" for commencing social distancing in order to meet the capacity of healthcare resources. However, if one wants to also delay the timing of peak infections - so as to take advantage of potential new therapies and vaccines - action must be taken much faster than the CID. Different relaxation strategies are also simulated, with surprising results. Periodic relaxation policies suggest a schedule which may significantly inhibit peak infective load, but that this schedule is very sensitive to parameter values and the schedule's frequency. Furthermore, we considered the impact of steadily reducing social distancing measures over time. We find that a too-sudden reopening of society may negate the progress achieved under initial distancing guidelines, but the negative effects can be mitigated if the relaxation strategy is carefully designed.


Assuntos
COVID-19/epidemiologia , Modelos Biológicos , Pandemias , Distanciamento Físico , SARS-CoV-2 , Infecções Assintomáticas/epidemiologia , Número Básico de Reprodução/estatística & dados numéricos , COVID-19/prevenção & controle , COVID-19/transmissão , Suscetibilidade a Doenças/epidemiologia , Humanos , Conceitos Matemáticos , Pandemias/prevenção & controle , Pandemias/estatística & dados numéricos , Biologia de Sistemas , Fatores de Tempo
3.
Annu Rev Control ; 51: 426-440, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33935582

RESUMO

Social distancing as a form of nonpharmaceutical intervention has been enacted in many countries as a form of mitigating the spread of COVID-19. There has been a large interest in mathematical modeling to aid in the prediction of both the total infected population and virus-related deaths, as well as to aid government agencies in decision making. As the virus continues to spread, there are both economic and sociological incentives to minimize time spent with strict distancing mandates enforced, and/or to adopt periodically relaxed distancing protocols, which allow for scheduled economic activity. The main objective of this study is to reduce the disease burden in a population, here measured as the peak of the infected population, while simultaneously minimizing the length of time the population is socially distanced, utilizing both a single period of social distancing as well as periodic relaxation. We derive a linear relationship among the optimal start time and duration of a single interval of social distancing from an approximation of the classic epidemic SIR model. Furthermore, we see a sharp phase transition region in start times for a single pulse of distancing, where the peak of the infected population changes rapidly; notably, this transition occurs well before one would intuitively expect. By numerical investigation of more sophisticated epidemiological models designed specifically to describe the COVID-19 pandemic, we see that all share remarkably similar dynamic characteristics when contact rates are subject to periodic or one-shot changes, and hence lead us to conclude that these features are universal in epidemic models. On the other hand, the nonlinearity of epidemic models leads to non-monotone behavior of the peak of infected population under periodic relaxation of social distancing policies. This observation led us to hypothesize that an additional single interval social distancing at a proper time can significantly decrease the infected peak of periodic policies, and we verified this improvement numerically. While synchronous quarantine and social distancing mandates across populations effectively minimize the spread of an epidemic over the world, relaxation decisions should not be enacted at the same time for different populations.

4.
J Theor Biol ; 367: 262-277, 2015 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-25457229

RESUMO

Intratumoral heterogeneity has been found to be a major cause of drug resistance. Cell-to-cell variation increases as a result of cancer-related alterations, which are acquired by stochastic events and further induced by environmental signals. However, most cellular mechanisms include natural fluctuations that are closely regulated, and thus lead to asynchronization of the cells, which causes intrinsic heterogeneity in a given population. Here, we derive two novel mathematical models, a stochastic agent-based model and an integro-differential equation model, each of which describes the growth of cancer cells as a dynamic transition between proliferative and quiescent states. These models are designed to predict variations in growth as a function of the intrinsic heterogeneity emerging from the durations of the cell-cycle and apoptosis, and also include cellular density dependencies. By examining the role all parameters play in the evolution of intrinsic tumor heterogeneity, and the sensitivity of the population growth to parameter values, we show that the cell-cycle length has the most significant effect on the growth dynamics. In addition, we demonstrate that the agent-based model can be approximated well by the more computationally efficient integro-differential equations when the number of cells is large. This essential step in cancer growth modeling will allow us to revisit the mechanisms of multidrug resistance by examining spatiotemporal differences of cell growth while administering a drug among the different sub-populations in a single tumor, as well as the evolution of those mechanisms as a function of the resistance level.


Assuntos
Modelos Biológicos , Neoplasias/patologia , Apoptose , Ciclo Celular , Linhagem Celular Tumoral , Proliferação de Células , Simulação por Computador , Humanos , Fatores de Tempo
5.
Front Oncol ; 13: 1227842, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37841430

RESUMO

Imbalanced data, a common challenge encountered in statistical analyses of clinical trial datasets and disease modeling, refers to the scenario where one class significantly outnumbers the other in a binary classification problem. This imbalance can lead to biased model performance, favoring the majority class, and affecting the understanding of the relative importance of predictive variables. Despite its prevalence, the existing literature lacks comprehensive studies that elucidate methodologies to handle imbalanced data effectively. In this study, we discuss the binary logistic model and its limitations when dealing with imbalanced data, as model performance tends to be biased towards the majority class. We propose a novel approach to addressing imbalanced data and apply it to publicly available data from the VITAL trial, a large-scale clinical trial that examines the effects of vitamin D and Omega-3 fatty acid to investigate the relationship between vitamin D and cancer incidence in sub-populations based on race/ethnicity and demographic factors such as body mass index (BMI), age, and sex. Our results demonstrate a significant improvement in model performance after our undersampling method is applied to the data set with respect to cancer incidence prediction. Both epidemiological and laboratory studies have suggested that vitamin D may lower the occurrence and death rate of cancer, but inconsistent and conflicting findings have been reported due to the difficulty of conducting large-scale clinical trials. We also utilize logistic regression within each ethnic sub-population to determine the impact of demographic factors on cancer incidence, with a particular focus on the role of vitamin D. This study provides a framework for using classification models to understand relative variable importance when dealing with imbalanced data.

6.
Artigo em Inglês | MEDLINE | ID: mdl-32656186

RESUMO

One of the most important factors limiting the success of chemotherapy in cancer treatment is the phenomenon of drug resistance. We have recently introduced a framework for quantifying the effects of induced and non-induced resistance to cancer chemotherapy (Greene et al., 2018a, 2019). In this work, we expound on the details relating to an optimal control problem outlined in Greene et al. (2018a). The control structure is precisely characterized as a concatenation of bang-bang and path-constrained arcs via the Pontryagin Maximum Principle and differential Lie algebraic techniques. A structural identifiability analysis is also presented, demonstrating that patient-specific parameters may be measured and thus utilized in the design of optimal therapies prior to the commencement of therapy. For completeness, a detailed analysis of existence results is also included.

7.
JCO Clin Cancer Inform ; 3: 1-20, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30969799

RESUMO

PURPOSE: Drug resistance is a major impediment to the success of cancer treatment. Resistance is typically thought to arise from random genetic mutations, after which mutated cells expand via Darwinian selection. However, recent experimental evidence suggests that progression to drug resistance need not occur randomly, but instead may be induced by the treatment itself via either genetic changes or epigenetic alterations. This relatively novel notion of resistance complicates the already challenging task of designing effective treatment protocols. MATERIALS AND METHODS: To better understand resistance, we have developed a mathematical modeling framework that incorporates both spontaneous and drug-induced resistance. RESULTS: Our model demonstrates that the ability of a drug to induce resistance can result in qualitatively different responses to the same drug dose and delivery schedule. We have also proven that the induction parameter in our model is theoretically identifiable and propose an in vitro protocol that could be used to determine a treatment's propensity to induce resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Evolução Molecular , Modelos Teóricos , Mutação , Algoritmos , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico , Neoplasias/genética
8.
Synth Biol (Oxf) ; 2(1): ysx005, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32995506

RESUMO

Quantifying the effect of vital resources on transcription (TX) and translation (TL) helps to understand the degree to which the concentration of each resource must be regulated for achieving homeostasis. Utilizing the synthetic TX-TL system, we study the impact of nucleotide triphosphates (NTPs) and magnesium (Mg2+) on gene expression. Recent observations of the counter-intuitive phenomenon of suppression of gene expression at high NTP concentrations have led to the speculation that such suppression is due to the consumption of resources by TX, hence leaving fewer resources for TL. In this work, we investigate an alternative hypothesis: direct suppression of the TL rate via stoichiometric mismatch in necessary reagents. We observe NTP-dependent suppression even in the early phase of gene expression, contradicting the resource-limitation argument. To further decouple the contributions of TX and TL, we performed gene expression experiments with purified messenger RNA (mRNA). Simultaneously monitoring mRNA and protein abundances allowed us to extract a time-dependent translation rate. Measuring TL rates for different Mg2+ and NTP concentrations, we observe a complex resource dependence. We demonstrate that TL is the rate-limiting process that is directly inhibited by high NTP concentrations. Additional Mg2+ can partially reverse this inhibition. In several experiments, we observe two maxima of the TL rate viewed as a function of both Mg2+ and NTP concentration, which can be explained in terms of an NTP-independent effect on the ribosome complex and an NTP-Mg2+ titration effect. The non-trivial compensatory effects of abundance of different vital resources signal the presence of complex regulatory mechanisms to achieve optimal gene expression.

9.
Cancer Res ; 76(10): 2882-90, 2016 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-26933088

RESUMO

Cell-to-cell variations contribute to drug resistance with consequent therapy failure in cancer. Experimental techniques have been developed to monitor tumor heterogeneity, but estimates of cell-to-cell variation typically fail to account for the expected spatiotemporal variations during the cell growth process. To fully capture the extent of such dynamic variations, we developed a mechanistic mathematical model supported by in vitro experiments with an ovarian cancer cell line. We introduce the notion of dynamic baseline cell-to-cell variation, showing how the emerging spatiotemporal heterogeneity of one cell population can be attributed to differences in local cell density and cell cycle. Manipulation of the geometric arrangement and spatial density of cancer cells revealed that given a fixed global cell density, significant differences in growth, proliferation, and paclitaxel-induced apoptosis rates were observed based solely on cell movement and local conditions. We conclude that any statistical estimate of changes in the level of heterogeneity should be integrated with the dynamics and spatial effects of the baseline system. This approach incorporates experimental and theoretical methods to systematically analyze biologic phenomena and merits consideration as an underlying reference model for cell biology studies that investigate dynamic processes affecting cancer cell behavior. Cancer Res; 76(10); 2882-90. ©2016 AACR.


Assuntos
Processos de Crescimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Modelos Teóricos , Neoplasias Ovarianas/patologia , Paclitaxel/farmacologia , Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Contagem de Células , Ciclo Celular/efeitos dos fármacos , Feminino , Humanos , Modelos Biológicos , Neoplasias Ovarianas/tratamento farmacológico , Células Tumorais Cultivadas
10.
Trends Mol Med ; 20(3): 129-36, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24491979

RESUMO

The main goal of treatment regimens for metastasis is to control growth rates, not eradicate all cancer cells. Mathematical models offer methodologies that incorporate high-throughput data with dynamic effects on net growth. The ideal approach would simplify, but not over-simplify, a complex problem into meaningful and manageable estimators that predict the response of a patient to specific treatments. We explore here three fundamental approaches with different assumptions concerning resistance mechanisms in which the cells are categorized into either discrete compartments or described by a continuous range of resistance levels. We argue in favor of modeling resistance as a continuum, and demonstrate how integrating cellular growth rates, density-dependent versus exponential growth, and intratumoral heterogeneity improves predictions concerning the resistance heterogeneity of metastases.


Assuntos
Resistencia a Medicamentos Antineoplásicos , Metástase Neoplásica/patologia , Linhagem Celular Tumoral , Humanos , Modelos Teóricos
11.
Cancer Res ; 73(24): 7168-75, 2013 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-24163380

RESUMO

Recent data have demonstrated that cancer drug resistance reflects complex biologic factors, including tumor heterogeneity, varying growth, differentiation, apoptosis pathways, and cell density. As a result, there is a need to find new ways to incorporate these complexities in the mathematical modeling of multidrug resistance. Here, we derive a novel structured population model that describes the behavior of cancer cells under selection with cytotoxic drugs. Our model is designed to estimate intratumoral heterogeneity as a function of the resistance level and time. This updated model of the multidrug resistance problem integrates both genetic and epigenetic changes, density dependence, and intratumoral heterogeneity. Our results suggest that treatment acts as a selection process, whereas genetic/epigenetic alteration rates act as a diffusion process. Application of our model to cancer treatment suggests that reducing alteration rates as a first step in treatment causes a reduction in tumor heterogeneity and may improve targeted therapy. The new insight provided by this model could help to dramatically change the ability of clinical oncologists to design new treatment protocols and analyze the response of patients to therapy.


Assuntos
Resistência a Múltiplos Medicamentos , Resistencia a Medicamentos Antineoplásicos , Modelos Biológicos , Neoplasias/tratamento farmacológico , Neoplasias/patologia , Antineoplásicos/administração & dosagem , Antineoplásicos/uso terapêutico , Contagem de Células , Humanos , Neoplasias/genética , Neoplasias/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA