Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 61
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Eur J Haematol ; 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38831675

RESUMO

Hydroxyurea (HU) is the most common drug therapy for sickle cell disease (SCD). The clinical benefits of HU derive from its upregulation of fetal hemoglobin (HbF), which reduces aggregation of the mutated sickle hemoglobin protein (HbS) and reduces SCD symptoms and complications. However, some individuals do not respond to HU, or stop responding over time. Unfortunately, current understanding of the mechanism of action of HU is limited, hindering the ability of clinicians to identify those patients who will respond to HU and to optimize treatment for those receiving HU. Given that epigenetic modifications are essential to erythropoiesis and HbF expression, we hypothesize that some effects of HU may be mediated by epigenetic modifications, specifically DNA methylation. However, few studies have investigated this possibility and the effects of HU on DNA methylation remain relatively understudied. In this review, we discuss the evidence linking HU treatment to DNA methylation changes and associated gene expression changes, with an emphasis on studies that were performed in individuals with SCD. Overall, although HU can affect DNA methylation, research on these changes and their clinical effects remains limited. Further study is likely to contribute to our understanding of hematopoiesis and benefit patients suffering from SCD.

2.
Pediatr Transplant ; 28(3): e14731, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38602156

RESUMO

BACKGROUND: Pediatric heart (HTx) and kidney transplant (KTx) recipients may have lower physical fitness than healthy children. This study sought to quantify fitness levels in transplant recipients, investigate associations to clinical factors and quality of life, and identify whether a quick, simple wall-sit test is feasible as a surrogate for overall fitness for longitudinal assessment. METHODS: Aerobic capacity (6-min walk test, 6MWT), normalized muscle strength, muscle endurance, physical activity questionnaire (PAQ), and quality of life (PedsQL™) were prospectively assessed in transplanted children and matched healthy controls. RESULTS: Twenty-two HTx were compared to 20 controls and 6 KTx. 6MWT %predicted was shorter in HTx (87.2 [69.9-118.6] %) than controls (99.9 [80.4-120] %), but similar to KTx (90.3 [78.6-115] %). Muscle strength was lower in HTx deltoids (6.15 [4.35-11.3] kg/m2) and KTx quadriceps (9.27 [8.65-19.1] kg/m2) versus controls. Similarly, muscle endurance was lower in HTx push-ups (28.6 [0-250] %predicted), KTx push-ups (8.35 [0-150] %predicted), HTx curl-ups (115 [0-450] %predicted), and KTx wall-sit time (18.5 [10.0-54.0] s) than controls. In contrast to HTx with only 9%, all KTx were receiving steroid therapy. The wall-sit test significantly correlated with other fitness parameters (normalized quadriceps strength R = .31, #push-ups R = .39, and #curl-ups R = .43) and PedsQL™ (R = .36). CONCLUSIONS: Compared to controls, pediatric HTx and KTx have similarly lower aerobic capacity, but different deficits in muscle strength, likely related to steroid therapy in KTx. The convenient wall-sit test correlates with fitness and reported quality of life, and thus could be a useful easy routine for longitudinal assessment.


Assuntos
Transplante de Coração , Qualidade de Vida , Humanos , Criança , Força Muscular/fisiologia , Aptidão Física , Esteroides , Músculos
3.
Pharmacogenomics J ; 22(3): 173-179, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35461379

RESUMO

One of the concerns limiting the use of clozapine in schizophrenia treatment is the risk of rare but potentially fatal myocarditis. Our previous genome-wide association study and human leucocyte antigen analyses identified putative loci associated with clozapine-induced myocarditis. However, the contribution of DNA variation in cytochrome P450 genes, copy number variants and rare deleterious variants have not been investigated. We explored these unexplored classes of DNA variation using whole-genome sequencing data from 25 cases with clozapine-induced myocarditis and 25 demographically-matched clozapine-tolerant control subjects. We identified 15 genes based on rare variant gene-burden analysis (MLLT6, CADPS, TACC2, L3MBTL4, NPY, SLC25A21, PARVB, GPR179, ACAD9, NOL8, C5orf33, FAM127A, AFDN, SLC6A11, PXDN) nominally associated (p < 0.05) with clozapine-induced myocarditis. Of these genes, 13 were expressed in human myocardial tissue. Although independent replication of these findings is required, our study provides preliminary insights into the potential role of rare genetic variants in susceptibility to clozapine-induced myocarditis.


Assuntos
Antipsicóticos , Clozapina , Miocardite , Esquizofrenia , Antipsicóticos/efeitos adversos , Clozapina/efeitos adversos , Estudo de Associação Genômica Ampla , Humanos , Miocardite/induzido quimicamente , Miocardite/tratamento farmacológico , Miocardite/genética , Esquizofrenia/tratamento farmacológico , Esquizofrenia/genética
4.
J Inherit Metab Dis ; 45(2): 366-376, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-34580891

RESUMO

The dilated cardiomyopathy with ataxia syndrome (DCMA) is an autosomal recessive mitochondrial disease caused by mutations in the DnaJ heat shock protein family (Hsp40) member C19 (DNAJC19) gene. DCMA or 3-methylglutaconic aciduria type V is globally rare, but the largest number of patients in the world is found in the Hutterite population of southern Alberta in Canada. We provide an update on phenotypic findings, natural history, pathological findings, and our clinical experience. We analyzed all available records for 43 patients diagnosed with DCMA between 2005 and 2015 at the Alberta Children's Hospital. All patients studied were Hutterite and homozygous for the causative DNAJC19 variant (c.130-1G>C, IVS3-1G>C) and had elevated levels of 3-methyglutaconic acid. We calculated a birth prevalence of 1.54 cases per 1000 total births in the Hutterite community. Children were small for gestational age at birth and frequently required supplemental nutrition (63%) or surgical placement of a gastrostomy tube (35%). Early mortality in this cohort was high (40%) at a median age of 13 months (range 4-294 months). Congenital anomalies were common as was dilated cardiomyopathy (50%), QT interval prolongation (83%), and developmental delay (95%). Tissue pathology was analyzed in a limited number of patients and demonstrated subendocardial fibrosis in the heart, macrovesicular steatosis and fibrosis in the liver, and structural abnormalities in mitochondria. This report provides clinical details for a cohort of children with DCMA and the first presentation of tissue pathology for this disorder. Despite sharing common genetic etiology and environment, the disease is highly heterogeneous for reasons that are not understood. DCMA is a clinically heterogeneous systemic mitochondrial disease with significant morbidity and mortality that is common in the Hutterite population of southern Alberta.


Assuntos
Cardiomiopatia Dilatada , Doenças Mitocondriais , Ataxia/genética , Cardiomiopatia Dilatada/diagnóstico , Cardiomiopatia Dilatada/genética , Cardiomiopatia Dilatada/metabolismo , Ataxia Cerebelar , Fibrose , Humanos , Erros Inatos do Metabolismo , Doenças Mitocondriais/complicações , Fenótipo , Síndrome
5.
Am J Hematol ; 97(10): 1359-1371, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35583381

RESUMO

Hematopoietic stem cell transplantation (HSCT) is the only established curative treatment for sickle cell disease (SCD), a debilitating red blood cell (RBC) disorder with significant prevalence worldwide. Accurate assessment of RBC engraftment following HSCT is essential to evaluate the status of the graft and can enable early intervention to treat or prevent graft rejection. Currently, chimerism measurement is performed on whole blood samples, which mainly reflect white blood cell (WBC) chimerism. This approach has limitations in assessing engraftment in patients with SCD because RBCs engraft non-linearly with WBCs. Direct measures of RBC chimerism exist but are not routinely used. In this review, we critically examine the current methodologies for assessing donor engraftment; highlight the limitations of these different methods, and present emerging and novel technologies with the potential to improve clinical monitoring of RBC engraftment post-HSCT for SCD. Promising alternative methodologies include RBC-specific flow cytometry, RBC-specific RNA analysis, and quantification of plasma cell-free DNA derived specifically from nucleated RBCs.


Assuntos
Anemia Falciforme , Transplante de Células-Tronco Hematopoéticas , Anemia Falciforme/terapia , Quimerismo , Rejeição de Enxerto , Transplante de Células-Tronco Hematopoéticas/métodos , Humanos , Doadores de Tecidos , Condicionamento Pré-Transplante/métodos
6.
Int J Mol Sci ; 23(6)2022 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-35328774

RESUMO

Human mitochondrial disorders impact tissues with high energetic demands and can be associated with cardiac muscle disease (cardiomyopathy) and early mortality. However, the mechanistic link between mitochondrial disease and the development of cardiomyopathy is frequently unclear. In addition, there is often marked phenotypic heterogeneity between patients, even between those with the same genetic variant, which is also not well understood. Several of the mitochondrial cardiomyopathies are related to defects in the maintenance of mitochondrial protein homeostasis, or proteostasis. This essential process involves the importing, sorting, folding and degradation of preproteins into fully functional mature structures inside mitochondria. Disrupted mitochondrial proteostasis interferes with mitochondrial energetics and ATP production, which can directly impact cardiac function. An inability to maintain proteostasis can result in mitochondrial dysfunction and subsequent mitophagy or even apoptosis. We review the known mitochondrial diseases that have been associated with cardiomyopathy and which arise from mutations in genes that are important for mitochondrial proteostasis. Genes discussed include DnaJ heat shock protein family member C19 (DNAJC19), mitochondrial import inner membrane translocase subunit TIM16 (MAGMAS), translocase of the inner mitochondrial membrane 50 (TIMM50), mitochondrial intermediate peptidase (MIPEP), X-prolyl-aminopeptidase 3 (XPNPEP3), HtraA serine peptidase 2 (HTRA2), caseinolytic mitochondrial peptidase chaperone subunit B (CLPB) and heat shock 60-kD protein 1 (HSPD1). The identification and description of disorders with a shared mechanism of disease may provide further insights into the disease process and assist with the identification of potential therapeutics.


Assuntos
Cardiomiopatias , Proteínas Mitocondriais , Cardiomiopatias/genética , Cardiomiopatias/metabolismo , Proteínas de Choque Térmico HSP40/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Proteínas Mitocondriais/genética , Proteínas Mitocondriais/metabolismo , Peptídeo Hidrolases/metabolismo , Transporte Proteico , Proteostase
7.
Clin Transplant ; 35(6): e14295, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-33756005

RESUMO

Increased levels of donor-derived cell-free DNA (dd-cfDNA) in recipient plasma have been associated with rejection after transplantation. DNA sequence differences have been used to distinguish between donor and recipient, but epigenetic differences could also potentially identify dd-cfDNA. This pilot study aimed to identify ventricle-specific differentially methylated regions of DNA (DMRs) that could be detected in cfDNA. We identified 24 ventricle-specific DMRs and chose two for further study, one on chromosome 9 and one on chromosome 12. The specificity of both DMRs for the left ventricle was confirmed using genomic DNA from multiple human tissues. Serial matched samples of myocardium (n = 33) and plasma (n = 24) were collected from stable adult heart transplant recipients undergoing routine endomyocardial biopsy for rejection surveillance. Plasma DMR levels increased with biopsy-proven rejection grade for individual patients. Mean cellular apoptosis in biopsy samples increased significantly with rejection severity (2.4%, 4.4% and 10.0% for ACR 0R, 1R, and 2R, respectively) but did not show a consistent relationship with DMR levels. We identified multiple DNA methylation patterns unique to the human ventricle and conclude that epigenetic differences in cfDNA populations represent a promising alternative strategy for the non-invasive detection of rejection.


Assuntos
Ácidos Nucleicos Livres , Adulto , Biomarcadores , Ácidos Nucleicos Livres/genética , Metilação de DNA , Rejeição de Enxerto/etiologia , Rejeição de Enxerto/genética , Ventrículos do Coração , Humanos , Projetos Piloto
8.
Clin Transplant ; 35(5): e14260, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33605497

RESUMO

Post-transplant diarrhea is a common complication after solid organ transplantation and is frequently attributed to the widely prescribed immunosuppressant mycophenolate mofetil (MMF). Given recent work identifying the relationship between MMF toxicity and gut bacterial ß-glucuronidase activity, we evaluated the relationship between gut microbiota composition, fecal ß-glucuronidase activity, and post-transplant diarrhea. We recruited 97 kidney transplant recipients and profiled the gut microbiota in 273 fecal specimens using 16S rRNA gene sequencing. We further characterized fecal ß-glucuronidase activity in a subset of this cohort. Kidney transplant recipients with post-transplant diarrhea had decreased gut microbial diversity and decreased relative gut abundances of 12 genera when compared to those without post-transplant diarrhea (adjusted p value < .15, Wilcoxon rank sum test). Among the kidney transplant recipients with post-transplant diarrhea, those with higher fecal ß-glucuronidase activity had a more prolonged course of diarrhea (≥7 days) compared to patients with lower fecal ß-glucuronidase activity (91% vs 40%, p = .02, Fisher's exact test). Our data reveal post-transplant diarrhea as a complex phenomenon with decreased gut microbial diversity and commensal gut organisms. This study further links commensal bacterial metabolism with an important clinical outcome measure, suggesting fecal ß-glucuronidase activity could be a novel biomarker for gastrointestinal-related MMF toxicity.


Assuntos
Microbioma Gastrointestinal , Transplante de Rim , Diarreia , Glucuronidase , Humanos , RNA Ribossômico 16S
9.
Biochem Cell Biol ; 98(1): 12-22, 2020 02.
Artigo em Inglês | MEDLINE | ID: mdl-31112654

RESUMO

Mortality and morbidity from cardiovascular diseases (CVDs) represents a huge burden to society. It is recognized that environmental factors and individual lifestyles play important roles in disease susceptibility, but the link between these external risk factors and our genetics has been unclear. However, the discovery of sequence-independent heritable DNA changes (epigenetics) have helped us to explain the link between genes and the environment. Multiple diverse epigenetic processes, including DNA methylation, histone modification, and the expression of non-coding RNA molecules affect the expression of genes that produce important changes in cellular differentiation and function, influencing the health and adaptability of the organism. CVDs such as congenital heart disease, cardiomyopathy, heart failure, cardiac fibrosis, hypertension, and atherosclerosis are now being viewed as much more complex and dynamic disorders. The role of epigenetics in these and other CVDs is currently under intense scrutiny, and we can expect important insights to emerge, including novel biomarkers and new approaches to enable precision medicine. This review summarizes the recent advances in our understanding of the role of epigenetics in CVD.


Assuntos
Doenças Cardiovasculares/genética , Epigênese Genética/genética , Epigenômica , Humanos
10.
Int J Mol Sci ; 21(21)2020 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-33171986

RESUMO

Mitochondrial disease represents a collection of rare genetic disorders caused by mitochondrial dysfunction. These disorders can be quite complex and heterogeneous, and it is recognized that mitochondrial disease can affect any tissue at any age. The reasons for this variability are not well understood. In this review, we develop and expand a subset of mitochondrial diseases including predominantly skeletal phenotypes. Understanding how impairment ofdiverse mitochondrial functions leads to a skeletal phenotype will help diagnose and treat patients with mitochondrial disease and provide additional insight into the growing list of human pathologies associated with mitochondrial dysfunction. The underlying disease genes encode factors involved in various aspects of mitochondrial protein homeostasis, including proteases and chaperones, mitochondrial protein import machinery, mediators of inner mitochondrial membrane lipid homeostasis, and aminoacylation of mitochondrial tRNAs required for translation. We further discuss a complex of frequently associated phenotypes (short stature, cataracts, and cardiomyopathy) potentially explained by alterations to steroidogenesis, a process regulated by mitochondria. Together, these observations provide novel insight into the consequences of impaired mitochondrial protein homeostasis.


Assuntos
Osso e Ossos/metabolismo , Doenças Mitocondriais/metabolismo , Esqueleto/metabolismo , Homeostase , Humanos , Mitocôndrias/metabolismo , Doenças Mitocondriais/genética , Doenças Mitocondriais/fisiopatologia , Proteínas de Transporte da Membrana Mitocondrial/metabolismo , Membranas Mitocondriais/metabolismo , Proteínas Mitocondriais/metabolismo , Chaperonas Moleculares/metabolismo , Peptídeo Hidrolases/metabolismo , Fenótipo , Transporte Proteico , Proteostase , Esqueleto/fisiologia
11.
Bioinformatics ; 33(16): 2573-2574, 2017 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-28383679

RESUMO

SUMMARY: In solid-organ transplant recipients, a delicate balance between immunosuppression and immunocompetence must be achieved, which can be difficult to monitor in real-time. Shotgun sequencing of cell-free DNA (cfDNA) has been recently proposed as a new way to indirectly assess immune function in transplant recipients through analysis of the status of the human virome. To facilitate exploration of the utility of the human virome as an indicator of immune status, and to enable rapid, straightforward analyses by clinicians, we developed a fully automated computational pipeline, EzMap, for performing metagenomic analysis of the human virome. EzMap combines a number of tools to clean, filter, and subtract WGS reads by mapping to a reference human assembly. The relative abundance of each virus present is estimated using a maximum likelihood approach that accounts for genome size, and results are presented with interactive visualizations and taxonomy-based summaries that enable rapid insights. The pipeline is automated to run on both workstations and computing clusters for all steps. EzMap automates an otherwise tedious and time-consuming protocol and aims to facilitate rapid and reproducible insights from cfDNA. AVAILABILITY AND IMPLEMENTATION: EzMap is freely available at https://github.com/dekoning-lab/ezmap. CONTACT: jason.dekoning@ucalgary.ca. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.


Assuntos
Metagenômica/métodos , Microbiota/genética , Análise de Sequência de DNA/métodos , Software , Vírus/genética , Biologia Computacional/métodos , Humanos
12.
Mol Genet Metab ; 125(4): 332-337, 2018 12.
Artigo em Inglês | MEDLINE | ID: mdl-30361042

RESUMO

BACKGROUND: Mitochondrial diseases are a clinically heterogeneous group of diseases caused by mutations in either nuclear or mitochondrial DNA (mtDNA). The diagnosis is challenging and has frequently required a tissue biopsy to obtain a sufficient quantity of mtDNA. Less-invasive sources mtDNA, such as peripheral blood leukocytes, urine sediment, or buccal swab, contain a lower quantity of mtDNA compared to tissue sources which may reduce sensitivity. Cellular apoptosis of tissues and hematopoetic cells releases fragments of DNA and mtDNA into the circulation and these molecules can be extracted from plasma as cell-free DNA (cfDNA). However, entire mtDNA has not been successfully identified from the cell free fraction previously. We hypothesized that the circular nature of mtDNA would prevent its degradation and a higher sensitivity method, such as next generation sequencing, could identify intact cf-mtDNA from human plasma. METHODS: Plasma was obtained from patients with mitochondrial disease diagnosed from skeletal muscle biopsy (n = 7) and healthy controls (n = 7) using a specially cfDNA collection tube (Streck Inc.; La Vista, NE). To demonstrate the presence of mtDNA within these samples, we amplified the isolated DNA using custom PCR primers specific to overlapping fragments of mtDNA. cfDNA samples were then sequenced using the Illumina MiSeq sequencing platform. RESULTS: We confirmed the presence of mtDNA, demonstrating that the full mitochondrial genome is in fact present within the cell-free plasma fraction of human blood. Sequencing identified the mitochondrial haplogroup matching with the tissue specimen for all patients. CONCLUSION: We report the existence of full length mtDNA in cell-free human plasma that was successfully used to perform haplogroup matching. Clinical applications for this work include patient monitoring for heteroplasmy status after mitochondrially-targeted therapies or haplogroup monitoring as a measure of stem cell transplantation.


Assuntos
Ácidos Nucleicos Livres/genética , DNA Mitocondrial/genética , Haplótipos/genética , Sequenciamento de Nucleotídeos em Larga Escala/métodos , Doenças Mitocondriais/diagnóstico , Doenças Mitocondriais/genética , Idoso , Idoso de 80 Anos ou mais , Estudos de Casos e Controles , Ácidos Nucleicos Livres/sangue , DNA Mitocondrial/sangue , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
13.
Curr Opin Cardiol ; 33(2): 134-139, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29095713

RESUMO

PURPOSE OF REVIEW: Bicuspid aortic valve (BAV)-associated aortopathy is common and its progression for individual patients is difficult to predict. The present review aims to identify recent developments using biomarkers for the determination of risk and progression of disease in patients with BAV aortopathy. RECENT FINDINGS: Novel rare genetic variants and epigenetic methylation signatures affecting non-cytosine phosphate guanine (non-CpG) and CpG sites, nicotinamide phosphoribosyltransferase and Sod expression may lead to improved prediction of the aortopathy phenotype. Circulating transforming growth factor ß-1/endoglin and miRNA signatures are found to be indicative of aortic dilation. Aortic miRNA, sphingomyelin and oxidative stress levels are linked to aortopathy progression and aortic dilation. Further evidence is shown that the pattern of cusp fusion in BAV may influence the location and extent of aortopathy. SUMMARY: The clinical phenotypic variability seen in BAV patients suggests complex interactions between genetic variants, epigenetic regulation modifications and the variable effect of valve-mediated hemodynamic flow disturbances on the aorta and its secreted markers. Emerging biomarkers may serve along with advanced noninvasive imaging modalities to precisely identify risk of aortic complications and identify those patients who are in need of surgical intervention.


Assuntos
Aorta Torácica , Doenças da Aorta , Valva Aórtica/anormalidades , Biomarcadores/sangue , Doenças das Valvas Cardíacas , Doenças da Aorta/sangue , Doenças da Aorta/diagnóstico , Doenças da Aorta/etiologia , Doença da Válvula Aórtica Bicúspide , Progressão da Doença , Epigênese Genética , Doenças das Valvas Cardíacas/sangue , Doenças das Valvas Cardíacas/complicações , Doenças das Valvas Cardíacas/diagnóstico , Hemodinâmica , Humanos
14.
Pediatr Cardiol ; 38(6): 1198-1205, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-28555404

RESUMO

Acute cellular rejection (ACR) compromises graft function after heart transplantation (HTX). The purpose of this study was to describe systolic myocardial deformation in pediatric HTX and to determine whether it is impaired during ACR. Eighteen combined cardiac magnetic resonance imaging (CMR)/endomyocardial biopsy (EMBx) examinations were performed in 14 HTX patients (11 male, age 13.9 ± 4.7 years; 1.2 ± 1.3 years after HTX). Biventricular function and left ventricular (LV) circumferential strain, rotation, and torsion by myocardial tagging CMR were compared to 11 controls as well as between patients with and without clinically significant ACR. HTX patients showed mildly reduced biventricular systolic function when compared to controls [LV ejection fraction (EF): 55 ± 8% vs. 61 ± 3, p = 0.02; right ventricular (RV) EF: 48 ± 7% vs. 53 ± 6, p = 0.04]. Indexed LV mass was mildly increased in HTX patients (67 ± 14 g/m2 vs. 55 ± 13, p = 0.03). LV myocardial deformation indices were all significantly reduced, expressed by global circumferential strain (-13.5 ± 2.3% vs. -19.1 ± 1.1%, p < 0.01), basal strain (-13.7 ± 3.0% vs. -17.5 ± 2.4%, p < 0.01), mid-ventricular strain (-13.4 ± 2.7% vs. -19.3 ± 2.2%, p < 0.01), apical strain (-13.5 ± 2.8% vs. -19.9 ± 2.0%, p < 0.01), basal rotation (-2.0 ± 2.1° vs. -5.0 ± 2.0°, p < 0.01), and torsion (6.1 ± 1.7° vs. 7.8 ± 1.1°, p < 0.01). EMBx demonstrated ACR grade 0 R in 3 HTX cases, ACR grade 1 R in 11 HTX cases and ACR grade 2 R in 4 HTX cases. When comparing clinically non-significant ACR (grades 0-1 R vs. ACR 2 R), basal rotation, and apical rotation were worse in ACR 2 R patients (-1.4 ± 1.8° vs. -4.2 ± 1.4°, p = 0.01 and 10.2 ± 2.9° vs. 2.8 ± 1.9°, p < 0.01, respectively). Pediatric HTX recipients demonstrate reduced biventricular systolic function and decreased myocardial contractility. Myocardial deformation indices by CMR may serve as non-invasive markers of graft function and, perhaps, rejection in pediatric HTX patients.


Assuntos
Rejeição de Enxerto/fisiopatologia , Transplante de Coração/efeitos adversos , Imageamento por Ressonância Magnética/métodos , Contração Miocárdica , Disfunção Ventricular Esquerda/fisiopatologia , Adolescente , Biópsia por Agulha , Criança , Pré-Escolar , Estudos Transversais , Endocárdio/patologia , Feminino , Rejeição de Enxerto/diagnóstico por imagem , Rejeição de Enxerto/etiologia , Humanos , Masculino , Contração Miocárdica/fisiologia , Miocárdio/patologia , Sístole , Disfunção Ventricular Esquerda/diagnóstico por imagem , Disfunção Ventricular Esquerda/etiologia , Função Ventricular Esquerda/fisiologia
15.
Hum Mutat ; 37(3): 269-79, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26666891

RESUMO

Individuals affected by restrictive cardiomyopathy (RCM) often develop heart failure at young ages resulting in early heart transplantation. Familial forms are mainly caused by mutations in sarcomere proteins and demonstrate a common genetic etiology with other inherited cardiomyopathies. Using next-generation sequencing, we identified two novel missense variants (p.S1624L; p.I2160F) in filamin-C (FLNC), an actin-cross-linking protein mainly expressed in heart and skeletal muscle, segregating in two families with autosomal-dominant RCM. Affected individuals presented with heart failure due to severe diastolic dysfunction requiring heart transplantation in some cases. Histopathology of heart tissue from patients of both families showed cytoplasmic inclusions suggesting protein aggregates, which were filamin-C specific for the p.S1624L by immunohistochemistry. Cytoplasmic aggregates were also observed in transfected myoblast cell lines expressing this mutant filamin-C indicating further evidence for its pathogenicity. Thus, FLNC is a disease gene for autosomal-dominant RCM and broadens the phenotype spectrum of filaminopathies.


Assuntos
Cardiomiopatia Restritiva/genética , Filaminas/genética , Adolescente , Adulto , Cardiomiopatias/metabolismo , Pré-Escolar , Feminino , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Masculino , Pessoa de Meia-Idade , Mutação , Linhagem , Adulto Jovem
16.
Stroke ; 47(12): 3005-3013, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27895300

RESUMO

BACKGROUND AND PURPOSE: A ruptured intracranial aneurysm (IA) is the leading cause of a subarachnoid hemorrhage. This study seeks to define a specific gene whose mutation leads to disease. METHODS: More than 500 IA probands and 100 affected families were enrolled and clinically characterized. Whole exome sequencing was performed on a large family, revealing a segregating THSD1 (thrombospondin type 1 domain containing protein 1) mutation. THSD1 was sequenced in other probands and controls. Thsd1 loss-of-function studies in zebrafish and mice were used for in vivo analyses and functional studies performed using an in vitro endothelial cell model. RESULTS: A nonsense mutation in THSD1 was identified that segregated with the 9 affected (3 suffered subarachnoid hemorrhage and 6 had unruptured IA) and was absent in 13 unaffected family members (LOD score 4.69). Targeted THSD1 sequencing identified mutations in 8 of 507 unrelated IA probands, including 3 who had suffered subarachnoid hemorrhage (1.6% [95% confidence interval, 0.8%-3.1%]). These THSD1 mutations/rare variants were highly enriched in our IA patient cohort relative to 89 040 chromosomes in Exome Aggregation Consortium (ExAC) database (P<0.0001). In zebrafish and mice, Thsd1 loss-of-function caused cerebral bleeding (which localized to the subarachnoid space in mice) and increased mortality. Mechanistically, THSD1 loss impaired endothelial cell focal adhesion to the basement membrane. These adhesion defects could be rescued by expression of wild-type THSD1 but not THSD1 mutants identified in IA patients. CONCLUSIONS: This report identifies THSD1 mutations in familial and sporadic IA patients and shows that THSD1 loss results in cerebral bleeding in 2 animal models. This finding provides new insight into IA and subarachnoid hemorrhage pathogenesis and provides new understanding of THSD1 function, which includes endothelial cell to extracellular matrix adhesion.


Assuntos
Aneurisma Roto/genética , Aneurisma Intracraniano/genética , Hemorragia Subaracnóidea/genética , Trombospondinas/genética , Animais , Códon sem Sentido , Modelos Animais de Doenças , Exoma , Predisposição Genética para Doença , Humanos , Camundongos , Linhagem , Peixe-Zebra , Proteínas de Peixe-Zebra
17.
Nat Genet ; 39(5): 638-44, 2007 May.
Artigo em Inglês | MEDLINE | ID: mdl-17401364

RESUMO

After the recent discovery that common genetic variation in 8q24 influences inherited risk of prostate cancer, we genotyped 2,973 SNPs in up to 7,518 men with and without prostate cancer from five populations. We identified seven risk variants, five of them previously undescribed, spanning 430 kb and each independently predicting risk for prostate cancer (P = 7.9 x 10(-19) for the strongest association, and P < 1.5 x 10(-4) for five of the variants, after controlling for each of the others). The variants define common genotypes that span a more than fivefold range of susceptibility to cancer in some populations. None of the prostate cancer risk variants aligns to a known gene or alters the coding sequence of an encoded protein.


Assuntos
Cromossomos Humanos Par 8/genética , Predisposição Genética para Doença/genética , Variação Genética , Neoplasias da Próstata/genética , Negro ou Afro-Americano , Etnicidade/genética , Genômica/métodos , Genótipo , Haplótipos/genética , Humanos , Masculino , Razão de Chances , Polimorfismo de Nucleotídeo Único , Fatores de Risco , Estados Unidos , População Branca
18.
Proc Natl Acad Sci U S A ; 109(35): 14035-40, 2012 Aug 28.
Artigo em Inglês | MEDLINE | ID: mdl-22904188

RESUMO

Congenital heart disease (CHD) occurs in ∼1% of newborns. CHD arises from many distinct etiologies, ranging from genetic or genomic variation to exposure to teratogens, which elicit diverse cell and molecular responses during cardiac development. To systematically explore the relationships between CHD risk factors and responses, we compiled and integrated comprehensive datasets from studies of CHD in humans and model organisms. We examined two alternative models of potential functional relationships between genes in these datasets: direct convergence, in which CHD risk factors significantly and directly impact the same genes and molecules and functional convergence, in which risk factors significantly impact different molecules that participate in a discrete heart development network. We observed no evidence for direct convergence. In contrast, we show that CHD risk factors functionally converge in protein networks driving the development of specific anatomical structures (e.g., outflow tract, ventricular septum, and atrial septum) that are malformed by CHD. This integrative analysis of CHD risk factors and responses suggests a complex pattern of functional interactions between genomic variation and environmental exposures that modulate critical biological systems during heart development.


Assuntos
Meio Ambiente , Predisposição Genética para Doença/epidemiologia , Deformidades Congênitas da Mão/epidemiologia , Deformidades Congênitas da Mão/genética , Mapas de Interação de Proteínas/genética , Bases de Dados Genéticas , Coração/embriologia , Humanos , Recém-Nascido , Fatores de Risco , Estatísticas não Paramétricas , Transcriptoma
19.
Pediatr Transplant ; 18(6): E190-2, 2014 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-24953969

RESUMO

We present an unusual case of CAV in a child with isolated disease in the LAD coronary artery. Initial progression of the disease appeared to have been halted by the use of sirolimus, but the assessment of disease in other vessels (particularly the RCA) was of particular importance in deciding whether or not to relist this patient for transplantation. Due to the known limitations of coronary angiography, we used OCT to assess for angiographically silent CAV. The normal intravascular appearance of the RCA by OCT was reassuring, and the child was not relisted for transplantation. OCT offers multiple advantages for the assessment of CAV in children.


Assuntos
Doença da Artéria Coronariana/diagnóstico , Doença da Artéria Coronariana/etiologia , Transplante de Coração/efeitos adversos , Tomografia de Coerência Óptica , Aloenxertos , Criança , Vasos Coronários , Progressão da Doença , Feminino , Humanos , Síndrome do Coração Esquerdo Hipoplásico/cirurgia , Imunossupressores/uso terapêutico , Sirolimo/uso terapêutico
20.
JACC Case Rep ; 29(13): 102379, 2024 Jul 03.
Artigo em Inglês | MEDLINE | ID: mdl-38827265

RESUMO

RASopathies cause nonsarcomeric hypertrophic cardiomyopathy via dysregulated signaling through RAS and upregulated mitogen-activated protein kinase activity. We provide the first report of the successful treatment of an adult with RAF1-associated hypertrophic cardiomyopathy using trametinib, a MEK inhibitor.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA