RESUMO
Phtheirospermum japonicum is a hemiparasitic plant of the Orobanchaceae, the largest family of parasitic plants. It extracts water and nutrients from other plants through haustoria along its roots. Haustoriogenesis, the formation of haustoria, is initiated by host-derived haustorium-inducing factors (HIFs). The first step in haustoriogenesis is the development of parasitically inactive protohaustoria. Here, we report that an endogenous peptide hormone, CLAVATA3/Embryo Surrounding Region 1 (PjCLE1), is sufficient to induce protohaustorium formation. PjCLE1 hyperactivated HIF-responses and caused prolific protohaustoria formation. PjCLE1 expression and activation by the subtilisin-type protease PjSBT1.2.3 occur in fully developed, mature haustoria, suggesting that PjCLE1 acts as an internal signal produced by mature haustoria to stimulate additional protohaustorium formation for effective extraction of resources from hosts. PjCLE1 is similar in sequence to CLEs regulating nodulation in legumes and part of a regulatory system for haustoria formation in parasitic plants.
Assuntos
Orobanchaceae , Hormônios Peptídicos , Proteínas de Plantas , Orobanchaceae/metabolismo , Orobanchaceae/genética , Hormônios Peptídicos/metabolismo , Proteínas de Plantas/metabolismo , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Raízes de Plantas/metabolismo , Raízes de Plantas/parasitologiaRESUMO
The hemiparasitic plant Phtheirospermum japonicum (Phtheirospermum) is a nutritional specialist that supplements its nutrient requirements by parasitizing other plants through haustoria. During parasitism, the Phtheirospermum haustorium transfers hypertrophy-inducing cytokinins (CKs) to the infected host root. The CK biosynthesis genes required for haustorium-derived CKs and the induction of hypertrophy are still unknown. We searched for haustorium-expressed isopentenyltransferases (IPTs) that catalyze the first step of CK biosynthesis, confirmed the specific expression by in vivo imaging of a promoter-reporter, and further analyzed the subcellular localization, the enzymatic function and contribution to inducing hypertrophy by studying CRISPR-Cas9-induced Phtheirospermum mutants. PjIPT1a was expressed in intrusive cells of the haustorium close to the host vasculature. PjIPT1a and its closest homolog PjIPT1b located to the cytosol and showed IPT activity in vitro with differences in substrate specificity. Mutating PjIPT1a abolished parasite-induced CK responses in the host. A homolog of PjIPT1a also was identified in the related weed Striga hermonthica. With PjIPT1a, we identified the IPT enzyme that induces CK responses in Phtheirospermum japonicum-infected Arabidopsis roots. We propose that PjIPT1a exemplifies how parasitism-related functions evolve through gene duplications and neofunctionalization.
Assuntos
Arabidopsis , Orobanchaceae , Alquil e Aril Transferases , Arabidopsis/genética , Citocininas , Regulação da Expressão Gênica de Plantas , Raízes de PlantasRESUMO
MAIN CONCLUSION: A special domain of the thylakoid membrane of higher plants has been isolated which carries out the de-epoxidation of the xanthophyll cycle pigment violaxanthin to zeaxanthin. Recent models indicate that in the chloroplast of higher plants, the violaxanthin (V) cycle takes place within specialized domains in the thylakoid membrane. Here, we describe a new procedure to directly isolate such a domain in functional state. The procedure consists of a thylakoid membrane isolation at a pH value of 5.2 which realizes the binding of the enzyme V de-epoxidase (VDE) to the membrane throughout the preparation process. Isolated thylakoid membranes are then solubilized with the very mild detergent n-dodecyl α-D-maltoside and the pigment-protein complexes are separated by sucrose gradient ultracentrifugation. The upper main fraction of the sucrose gradient represents a V cycle domain which consists of the major light-harvesting complex of photosystem II (LHCII), a special lipid composition with an enrichment of the galactolipid monogalactosyldiacylglycerol (MGDG) and the VDE. The domain is isolated in functional state as evidenced by the ability to convert the LHCII-associated V to zeaxanthin. The direct isolation of a V cycle domain proves the most important hypotheses concerning the de-epoxidation reaction in intact thylakoid membranes. It shows that the VDE binds to the thylakoid membrane at low pH values of the thylakoid lumen, that it binds to membrane regions enriched in LHCII, and that the domain contains high amounts of MGDG. The last point is in line with the importance of the galactolipid for V solubilisation and, by providing inverted hexagonal lipid structures, for VDE activity.