Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 20(23): 16294, 2018 06 13.
Artigo em Inglês | MEDLINE | ID: mdl-29862392

RESUMO

Retraction of 'On the enzymatic activity of catalase: an iron L-edge X-ray absorption study of the active centre' by Nora Bergmann et al., Phys. Chem. Chem. Phys., 2010, 12, 4827-4832.

2.
Chemphyschem ; 13(12): 2982-8, 2012 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-22761060

RESUMO

Herein, we investigate the behaviour of the surface recombination of light-induced charge carriers during the etching of Si in alkaline (KOH) and acidic etching solutions of HF/HNO(3)/CH(3)COOH (HNA) or HF/HNO(3)/H(3)PO(4) (HNP) at different concentration ratios of HF and HNO(3) by means of photoluminescence (PL) measurements. The surface recombination velocity is strongly reduced during the first stages of etching in HF/HNO(3)-containing solutions pointing to a interface well passivated by the etching process, where a positive surface charge is induced by hole injection from NO-related surface species into the Si near-surface region (back surface field effect). This injected charge leads to a change in band bending by about 150 mV that repulses the light-induced charge carriers from the surface and therefore enhances the photoluminescence intensity, since non-radiative surface recombination is reduced.

3.
Phys Chem Chem Phys ; 12(18): 4827-32, 2010 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-20428565

RESUMO

Catalase and methaemoglobin have very similar haem groups, which are both ferric, yet catalase decomposes hydrogen peroxide to water and oxygen very efficiently, while methaemoglobin does not. Structural studies have attributed this behaviour to their different distal environments. Here we present Fe L(2,3)-edge X-ray absorption spectra of these proteins in physiological solutions, which reveal clear differences in their electronic structures, in that pi back-donation of the Fe atom occurs in catalase, which confers on it a partial ferryl (Fe(4+)) character, while this is not the case in methaemoglobin. The origin of the Fe(4+) character stems from the proximal tyrosine residue. We also find that both systems are in a high spin state. Temperature effects influence the spectra of catalase only weakly, in agreement with previous studies of its chemical activity. We conclude that the high activity of catalase is not only determined by its distal environment but also by its partial ferryl character.


Assuntos
Catalase/química , Catalase/metabolismo , Domínio Catalítico , Ferro , Espectroscopia por Absorção de Raios X , Animais , Bovinos , Heme , Modelos Moleculares , Temperatura
4.
ACS Appl Mater Interfaces ; 7(21): 11654-9, 2015 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-25965159

RESUMO

Although hydrogenated amorphous silicon is already widely examined regarding its structural and electronic properties, the chemical etching behavior of this material is only roughly understood. We present a detailed study of the etching properties of intrinsic hydrogenated amorphous silicon, (i)a-Si:H, layers on crystalline silicon, c-Si, within the framework of metal assisted chemical etching (MACE) using silver nanoparticles (Ag NPs). The etching processes are examined by in situ photoluminescence (PL) and in situ surface photovoltage (SPV) measurements, as these techniques allow a monitoring of the hole injection that takes place during MACE. By in situ PL measurements and SEM images, we could interpret the different stages of the MACE process of (i)a-Si:H layers and determine etch rates of (i)a-Si:H, that are found to be influenced by the size of the Ag NPs. In situ PL and in situ SPV measurements both enable researchers to determine when the Ag NPs reach the (i)a-Si:H/c-Si interface. Furthermore, a preferential MACE of (i)a-Si:H versus c-Si is revealed for the first time. This effect could be explained by an interplay of the different thermodynamic and structural properties of the two materials as well as by hole injection during MACE resulting in a field effect passivation. The presented results allow an application of the examined MACE processes for Si nanostructuring applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA