Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Mol Imaging ; 18: 1536012119829986, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31044647

RESUMO

OBJECTIVE: The goal is to evaluate avelumab, an anti-PD-L1 monoclonal immunoglobulin G antibody labeled with zirconium-89 in human PD-L1-expressing cancer cells and mouse xenografts for clinical translation. METHODS: [89Zr]Zr-DFO-PD-L1 monoclonal antibody (mAb) was synthesized using avelumab conjugated to desferrioxamine. In vitro binding studies and biodistribution studies were performed with PD-L1+MDA-MB231 cells and MDA-MB231 xenograft mouse models, respectively. Biodistributions were determined at 1, 2, 3, 5, and 7 days post coinjection of [89Zr]Zr-DFO-PD-L1 mAb without or with unlabeled avelumab (10, 20, 40, and 400 µg). RESULTS: [89Zr]Zr-DFO-PD-L1 mAb exhibited high affinity (Kd ∼ 0.3 nM) and detected moderate PD-L1 expression levels in MDA-MB231 cells. The spleen and lymph nodes exhibited the highest [89Zr]Zr-DFO-PD-L1 mAb uptakes in all time points, while MDA-MB231 tumor uptakes were lower but highly retained. In the unlabeled avelumab dose escalation studies, spleen tissue-muscle ratios decreased in a dose-dependent manner indicating specific [89Zr]Zr-DFO-PD-L1 mAb binding to PD-L1. In contrast, lymph node and tumor tissue-muscle ratios increased 4- to 5-fold at 20 and 40 µg avelumab doses. CONCLUSIONS: [89Zr]Zr-DFO-PD-L1 mAb exhibited specific and high affinity for PD-L1 in vitro and had target tissue uptakes correlating with PD-L1 expression levels in vivo. [89Zr]Zr-DFO-PD-L1 mAb uptake in PD-L1+tumors increased with escalating doses of avelumab.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Antígeno B7-H1/metabolismo , Neoplasias da Mama/tratamento farmacológico , Desferroxamina/química , Radioisótopos/química , Zircônio/química , Animais , Anticorpos Monoclonais/química , Anticorpos Monoclonais/farmacocinética , Anticorpos Monoclonais Humanizados , Neoplasias da Mama/diagnóstico por imagem , Neoplasias da Mama/metabolismo , Relação Dose-Resposta a Droga , Regulação para Baixo , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Imunoconjugados , Camundongos , Tomografia por Emissão de Pósitrons , Distribuição Tecidual , Resultado do Tratamento , Ensaios Antitumorais Modelo de Xenoenxerto
2.
J Immunol ; 191(5): 2299-307, 2013 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-23904158

RESUMO

This study affirmed that isolated CD8(+) T cells express mRNA and produce TGF-ß following cognate peptide recognition. Blockage of endogenous TGF-ß with either a TGF-ß-blocking Ab or a small molecule inhibitor of TGF-ßRI enhances the generation of CD62L(high)/CD44(high) central memory CD8(+) T cells accompanied with a robust recall response. Interestingly, the augmentation within the central memory T cell pool occurs in lieu of cellular proliferation or activation, but with the expected increase in the ratio of the Eomesoderm/T-bet transcriptional factors. Yet, the signal transduction pathway(s) seems to be noncanonical, independent of SMAD or mammalian target of rapamycin signaling. Enhancement of central memory generation by TGF-ß blockade is also confirmed in human PBMCs. The findings underscore the role(s) that autocrine TGF-ß plays in T cell homeostasis and, in particular, the balance of effector/memory and central/memory T cells. These results may provide a rationale to targeting TGF-ß signaling to enhance Ag-specific CD8(+) T cell memory against a lethal infection or cancer.


Assuntos
Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular , Memória Imunológica/imunologia , Ativação Linfocitária/imunologia , Transdução de Sinais/imunologia , Fator de Crescimento Transformador beta1/imunologia , Transferência Adotiva , Animais , Western Blotting , Linfócitos T CD8-Positivos/citologia , Diferenciação Celular/imunologia , Ensaio de Imunoadsorção Enzimática , Feminino , Citometria de Fluxo , Camundongos , Camundongos Endogâmicos C57BL , Reação em Cadeia da Polimerase em Tempo Real
3.
Cancer Immunol Immunother ; 63(12): 1307-17, 2014 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-25186612

RESUMO

The transcription factor brachyury is a major driver of epithelial to mesenchymal transition in human carcinoma cells. It is overexpressed in several human tumor types versus normal adult tissues, except for testes and thyroid. Overexpression is associated with drug resistance and poor prognosis. Previous studies identified a brachyury HLA-A2 cytotoxic T-lymphocyte epitope. The studies reported here describe an enhancer epitope of brachyury. Compared to the native epitope, the agonist epitope: (a) has enhanced binding to MHC class I, (b) increased the IFN-γ production from brachyury-specific T cells, (c) generated brachyury-specific T cells with greater levels of perforin and increased proliferation, (d) generated T cells more proficient at lysing human carcinoma cells endogenously expressing the native epitope, and (e) achieved greater brachyury-specific T-cell responses in vivo in HLA-A2 transgenic mice. These studies also report the generation of a heat-killed recombinant Saccharomyces cerevisiae (yeast) vector expressing the full-length brachyury gene encoding the agonist epitope. Compared to yeast-brachyury (native) devoid of the agonist epitope, the yeast-brachyury (agonist) enhanced the activation of brachyury-specific T cells, which efficiently lysed human carcinoma cells. In addition to providing the rationale for the recombinant yeast-brachyury (agonist) as a potential vaccine in cancer therapy, these studies also provide the rationale for the use of the agonist in (a) dendritic cell (DC) vaccines, (b) adjuvant or liposomal vaccines, (c) recombinant viral and/or bacterial vaccines, (d) protein/polypeptide vaccines, (e) activation of T cells ex vivo in adoptive therapy protocols, and (f) generation of genetically engineered targeted T cells.


Assuntos
Transição Epitelial-Mesenquimal/imunologia , Epitopos de Linfócito T/imunologia , Proteínas Fetais/imunologia , Neoplasias/imunologia , Proteínas com Domínio T/imunologia , Linfócitos T Citotóxicos/imunologia , Animais , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Transgênicos , Metástase Neoplásica , Neoplasias/patologia , Neoplasias/terapia
4.
J Immunol ; 188(9): 4323-33, 2012 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-22450814

RESUMO

Immunologic memory involving CD8(+) T cells is a hallmark of an adaptive Ag-specific immune response and constitutes a critical component of protective immunity. Designing approaches that enhance long-term T cell memory would, for the most part, fortify vaccines and enhance host protection against infectious diseases and, perhaps, cancer immunotherapy. A better understanding of the cellular programs involved in the Ag-specific T cell response has led to new approaches that target the magnitude and quality of the memory T cell response. In this article, we show that T cells from TCR transgenic mice for the nucleoprotein of influenza virus NP68 exhibit the distinct phases--priming, expansion, contraction, and memory--of an Ag-specific T cell response when exposed in vitro to the cognate peptide. Saracatinib, a specific inhibitor of Src family kinases, administered at low doses during the expansion or contraction phases, increased CD62L(high)/CD44(high) central memory CD8(+) T cells and IFN-γ production but suppressed immunity when added during the priming phase. These effects by saracatinib were not accompanied by the expected decline of Src family kinases but were accompanied by Akt-mammalian target of rapamycin suppression and/or mediated via another pathway. Increased central memory cells by saracatinib were recapitulated in mice using a poxvirus-based influenza vaccine, thus underscoring the importance of dose and timing of the inhibitor in the context of memory T cell differentiation. Finally, vaccine plus saracatinib treatment showed better protection against tumor challenge. The immune-potentiating effects on CD8(+) T cells by a low dose of saracatinib might afford better protection from pathogens or cancer when combined with vaccine.


Assuntos
Benzodioxóis/farmacologia , Linfócitos T CD8-Positivos/imunologia , Diferenciação Celular/efeitos dos fármacos , Memória Imunológica/efeitos dos fármacos , Quinazolinas/farmacologia , Animais , Antígenos Virais/genética , Antígenos Virais/imunologia , Antígenos Virais/metabolismo , Linfócitos T CD8-Positivos/enzimologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/metabolismo , Diferenciação Celular/genética , Linhagem Celular Tumoral , Humanos , Receptores de Hialuronatos/genética , Receptores de Hialuronatos/imunologia , Receptores de Hialuronatos/metabolismo , Memória Imunológica/genética , Vírus da Influenza A/genética , Vírus da Influenza A/imunologia , Vírus da Influenza A/metabolismo , Vacinas contra Influenza/genética , Vacinas contra Influenza/imunologia , Interferon gama/genética , Interferon gama/imunologia , Interferon gama/metabolismo , Selectina L/genética , Selectina L/imunologia , Selectina L/metabolismo , Camundongos , Camundongos Transgênicos , Neoplasias Experimentais/genética , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/metabolismo , Proteínas Virais/genética , Proteínas Virais/imunologia , Proteínas Virais/metabolismo , Quinases da Família src/antagonistas & inibidores , Quinases da Família src/genética , Quinases da Família src/imunologia , Quinases da Família src/metabolismo
5.
Immunotargets Ther ; 10: 155-169, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34079772

RESUMO

NHS-IL12 is a novel immunocytokine designed for delivery of IL-12 to the tumor microenvironment (TME). NHS-IL12 consists of two molecules of IL-12 fused to a human IgG1 (NHS76) recognizing DNA/histone complexes, which are often exposed in the necrotic portions of tumors. Preclinical studies demonstrated the tumor-targeting ability and longer plasma half-life for NHS-IL12 when compared with recombinant IL-12 (rIL-12). NHS-IL12 outperformed rIL-12 in enhancing the proliferation and activation of immune as well as antigen-presenting cells, resulting in a more robust primary immune response. NHS-IL12 also reduced the number and function of suppressive myeloid cells (myeloid derived suppressor cells/macrophages) within the TME. In a murine bladder tumor model, NHS-IL12 administration led to a coordinated increase in host immunity with a reduction of immunosuppressive myeloid cells in the TME resulting in substantial reduction in tumor growth. Several preclinical studies have demonstrated increased overall anti-tumor efficacy when NHS-IL12 was combined with either immune-based therapeutics or chemotherapeutic approaches.

6.
Clin Cancer Res ; 15(7): 2387-96, 2009 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-19276249

RESUMO

PURPOSE: IFN-alpha is a pleiotropic cytokine possessing immunomodulatory properties that may improve the efficacy of therapeutic cancer vaccines. The aim of this study was to evaluate the effectiveness and compatibility of combining recombinant IFN-alpha with poxvirus vaccines targeting the human carcinoembryonic antigen (CEA) in murine models of colorectal and pancreatic adenocarcinomas, where CEA is a self-antigen. EXPERIMENTAL DESIGN: The phenotypic and functional effects of IFN-alpha were evaluated in the draining inguinal lymph nodes of tumor-free mice. We studied the effect of the site of IFN-alpha administration (local versus distal) on antigen-specific immune responses to poxvirus vaccination. Mechanistic studies were conducted to assess the efficacy of IFN-alpha and CEA-directed poxvirus vaccines in tumor-bearing CEA transgenic mice. RESULTS: We identified a dose and schedule of IFN-alpha that induced a locoregional expansion of the draining inguinal lymph nodes and improved cellular cytotoxicity (natural killer and CD8(+)) and antigen presentation. Suppression of the vaccinia virus was avoided by administering IFN-alpha distal to the site of vaccination. The combination of IFN-alpha and vaccine inhibited tumor growth, improved survival, and elicited CEA-specific CTL responses in mice with CEA(+) adenocarcinomas. In mice with pancreatic tumors, IFN-alpha slowed tumor growth, induced CTL activity, and increased CD8(+) tumor-infiltrating lymphocytes. CONCLUSIONS: These data suggest that IFN-alpha can be used as a biological response modifier with antigen-directed poxvirus vaccines to yield significant therapeutic antitumor immune responses. This study provides the rationale and mechanistic insights to support a clinical trial of this immunotherapeutic strategy in patients with CEA-expressing carcinomas.


Assuntos
Adenocarcinoma/tratamento farmacológico , Adjuvantes Imunológicos/uso terapêutico , Antineoplásicos/uso terapêutico , Vacinas Anticâncer/uso terapêutico , Vírus da Varíola das Aves Domésticas/genética , Interferon-alfa/uso terapêutico , Vaccinia virus/genética , Adenocarcinoma/imunologia , Animais , Vacinas Anticâncer/genética , Antígeno Carcinoembrionário/genética , Linhagem Celular Tumoral , Terapia Combinada , DNA Recombinante/análise , Feminino , Antígenos de Histocompatibilidade Classe I/metabolismo , Linfonodos/efeitos dos fármacos , Linfonodos/imunologia , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Fenótipo
7.
Anticancer Res ; 40(10): 5329-5341, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32988851

RESUMO

Investigation of the efficacy and mechanisms of human immuno-oncology agents has been hampered due to species-specific differences when utilizing preclinical mouse models. Peripheral blood mononuclear cell (PBMC) humanized mice provide a platform for investigating the modulation of the human immune-mediated antitumor response while circumventing the limitations of syngeneic model systems. Use of humanized mice has been stymied by model-specific limitations, some of which include the development of graft versus host disease, technical difficulty and cost associated with each humanized animal, and insufficient engraftment of some human immune subsets. Recent advances have addressed many of these limitations from which have emerged humanized models that are more clinically relevant. This review characterizes the expanded usage, advantages and limitations of humanized mice and provides insights into the development of the next generation of murine humanized models to further inform clinical applications of cancer immunotherapeutic agents.


Assuntos
Imunidade Celular/efeitos dos fármacos , Imunoterapia , Leucócitos Mononucleares/imunologia , Neoplasias/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados/imunologia , Anticorpos Monoclonais Humanizados/farmacologia , Antineoplásicos/imunologia , Antineoplásicos/farmacologia , Modelos Animais de Doenças , Humanos , Leucócitos Mononucleares/efeitos dos fármacos , Camundongos , Neoplasias/imunologia , Neoplasias/patologia
8.
Front Oncol ; 10: 549, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32373533

RESUMO

The lack of serial biopsies in patients with a range of carcinomas has been one obstacle in our understanding of the mechanism of action of immuno-oncology agents as well as the elucidation of mechanisms of resistance to these novel therapeutics. While much information can be obtained from studies conducted with syngeneic mouse models, these models have limitations, including that both tumor and immune cells being targeted are murine and that many of the immuno-oncology agents being evaluated are human proteins, and thus multiple administrations are hampered by host xenogeneic responses. Some of these limitations are being overcome by the use of humanized mouse models where human peripheral blood mononuclear cells (PBMC) are engrafted into immunosuppressed mouse strains. Bintrafusp alfa (M7824) is an innovative first-in-class bifunctional fusion protein composed of the extracellular domain of the TGF-ßRII to function as a TGF-ß "trap" fused to a human IgG1 antibody blocking PD-L1. A phase I clinical trial of bintrafusp alfa showed promising anti-tumor efficacy in heavily pretreated advanced solid tumors, and multiple clinical studies are currently ongoing. There is still much to learn regarding the mechanism of action of bintrafusp alfa, including its effects on both human immune cells in the periphery and in the tumor microenvironment (TME), and any temporal effects upon multiple administrations. By using the NSG-ß2m-/- mouse strain humanized with PBMC, we demonstrate here for the first time: (a) the effects of bintrafusp alfa administration on human immune cells in the periphery vs. the TME using three different human xenograft models; (b) temporal effects upon multiple administrations of bintrafusp alfa; (c) phenotypic changes induced in the TME, and (d) variations observed in the use of multiple different PBMC donors. Also discussed are the similarities and differences in the data thus far obtained employing murine syngeneic models, from clinical trials, and in the use of this humanized mouse model. The results described here may guide the future use of this agent or similar immunotherapy agents as monotherapies or in combination therapy studies.

9.
Clin Cancer Res ; 14(13): 4316-25, 2008 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-18594015

RESUMO

PURPOSE: Saccharomyces cerevisiae, a nonpathogenic yeast, has been used previously as a vehicle to elicit immune responses to foreign antigens, and tumor-associated antigens, and has been shown to reduce tumor burden in mice. Studies were designed to determine if vaccination of human carcinoembryonic antigen (CEA)-transgenic (CEA-Tg) mice (where CEA is a self-antigen) with a recombinant S. cerevisiae construct expressing human CEA (yeast-CEA) elicits CEA-specific T-cell responses and antitumor activity. EXPERIMENTAL DESIGN: CEA-Tg mice were vaccinated with yeast-CEA, and CD4(+) and CD8(+) T-cell responses were assessed after one and multiple administrations or vaccinations at multiple sites per administration. Antitumor activity was determined by tumor growth and overall survival in both pulmonary metastasis and s.c. pancreatic tumor models. RESULTS: These studies demonstrate that recombinant yeast can break tolerance and that (a) yeast-CEA constructs elicit both CEA-specific CD4(+) and CD8(+) T-cell responses; (b) repeated yeast-CEA administration causes increased antigen-specific T-cell responses after each vaccination; (c) vaccination with yeast-CEA at multiple sites induces a greater T-cell response than the same dose given at a single site; and (d) tumor-bearing mice vaccinated with yeast-CEA show a reduction in tumor burden and increased overall survival compared to mock-treated or control yeast-vaccinated mice in both pulmonary metastasis and s.c. pancreatic tumor models. CONCLUSIONS: Vaccination with a heat-killed recombinant yeast expressing the tumor-associated antigen CEA induces CEA-specific immune responses, reduces tumor burden, and extends overall survival in CEA-Tg mice. These studies thus form the rationale for the incorporation of recombinant yeast-CEA and other recombinant yeast constructs in cancer immunotherapy protocols.


Assuntos
Antígenos de Neoplasias/química , Antineoplásicos/farmacologia , Antígeno Carcinoembrionário/química , Regulação da Expressão Gênica , Imunoterapia/métodos , Saccharomyces cerevisiae/metabolismo , Vacinas de DNA/química , Animais , Antígenos de Neoplasias/metabolismo , Linfócitos T CD8-Positivos/metabolismo , Vacinas Anticâncer , Antígeno Carcinoembrionário/metabolismo , Proliferação de Células , Feminino , Humanos , Linfócitos/citologia , Camundongos , Camundongos Endogâmicos C57BL , Proteínas Recombinantes/química , Vacinas de DNA/metabolismo
10.
J Immunother Cancer ; 7(1): 150, 2019 06 11.
Artigo em Inglês | MEDLINE | ID: mdl-31186063

RESUMO

BACKGROUND: While significant strides in the treatment of metastatic bladder cancer have been made with immune checkpoint inhibitors, the treatment of carcinoma in situ and non-muscle invasive, non-metastatic (superficial) human urothelial carcinoma, also termed non-muscle invasive bladder cancer (NMIBC), remains intractable with bacillus Calmette-Guerin (BCG) employed as the standard of care. In this study, an immunocytokine, NHS-muIL12, which consists of two molecules of murine IL-12 fused to NHS76, a tumor necrosis-targeting human IgG1, was examined as an immunotherapeutic in an orthotopic MB49luc bladder tumor model. METHODS: The antitumor activity of systemic administration of NHS-muIL12 was investigated on MB49luc tumors, an aggressive, bioluminescent orthotopic bladder cancer model. Temporal studies were carried out on MB49luc bladder tumors harvested during various time points during NHS-muIL12 treatment and cellular changes associated with the reduction in tumor burden following NHS-muIL12 were determined by flow cytometry. Effects of those changes on the proliferation/activation of lymphoid cells were also determined. RESULTS: Studies revealed a significant reduction in MB49luc bladder tumor burden occurring between days 3 and 6 after the third and final systemic administration of NHS-muIL12. Temporal analyses of the MB49luc bladder tumor microenvironment (TME) initially revealed a large accumulation of myeloid-derived suppressor cells (MDSCs) and macrophages that elicited potent immunosuppression. Immunosuppression was characterized by the inability of CD4+ and CD8+ T cells to respond to broad-based immune stimulants. NHS-muIL12 administration resulted in temporal-dependent reductions in the number of MDSCs, macrophages and tumor-associated TGF-ß, which culminated in a re-ignition of CD4+ and CD8+ T cells to elicit potent antitumor responses against MB49luc bladder tumors. CONCLUSIONS: These findings provide strong evidence that the systemic administration of an immunocytokine consisting of a tumor-targeting Ig through recognition of DNA and DNA-histone complexes coupled to muIL-12 can effectively target the bladder TME; this significantly reduces the myeloid cellular compartment and reverts an immunosuppressive to an immunopermissive TME, ultimately resulting in antitumor effects. These studies provide further rationale for the employment of NHS-IL12 as an immunomodulator and clinical immunotherapeutic for NMIBC.


Assuntos
Imunoglobulina G/genética , Imunoterapia/métodos , Interleucina-12/genética , Proteínas Recombinantes de Fusão/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Animais , Modelos Animais de Doenças , Feminino , Humanos , Camundongos , Microambiente Tumoral
11.
J Interferon Cytokine Res ; 28(2): 73-87, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18279103

RESUMO

Interferon-gamma (IFN-gamma) is a proinflammatory cytokine that also acts as a potent immunomodulatory agent. In this study, a replication-deficient recombinant avian (fowlpox) virus was engineered to express the murine IFN-gamma gene (rF-MuIFN-gamma) with the rationale of delivering concentrated levels of the cytokine to a local tissue microenvironment. Subcutaneous (s.c.) rF-MuIFN-gamma administration resulted in IFN-gamma production that (1) was restricted to the tissue microenvironment of the injection site and (2) was biologically active, as evidenced by a significant increase of class I MHC expression levels in s.c. growing tumors following rF-MuIFN-gamma administration. Infection of a highly tumorigenic murine cell line, MC38, with rF-MuIFN-gamma functioned as an effective tumor cell-based vaccine by protecting mice from the formation of primary tumors and from subsequent tumor challenge. The cell-based vaccine was completely ineffective if mice were vaccinated with MC38 cells either pretreated with rIFN-gamma or infected with the wild-type fowlpox virus (FP-WT). Analysis of the regional lymph nodes draining the site of injection of the rF-MuIFN-gamma-based tumor cell vaccine revealed the presence of tumor-specific cell lysis (CTL) as well as a significant amount of lysis directed at natural killer (NK)-sensitive YAC-1 cells. Flow cytometric analyses coupled with functional assays confirmed the sustained presence of NK1.1(+) cells within those draining lymph nodes for up to 5 days after rF-MuIFN-gamma injection. Mice treated with NK cell-depleting antibodies prior to the injection of the rF-MuIFN-gamma-infected MC38 tumor cells were not protected from primary tumor growth; analysis of the lymph nodes draining the injection site in NK-depleted mice revealed an accompanying loss of the tumor-specific CTL activity. The findings provide evidence that NK cells, known for their contributions to host innate immunity, also provide immunoregulatory signals required for the development of an adaptive immune response, which, in turn, protected vaccinated mice against tumor growth.


Assuntos
Vacinas Anticâncer/imunologia , Vírus da Varíola das Aves Domésticas/genética , Fatores Imunológicos/genética , Interferon gama/genética , Células Matadoras Naturais/imunologia , Linfonodos/imunologia , Animais , Vacinas Anticâncer/administração & dosagem , Linhagem Celular Tumoral , Movimento Celular , Citotoxicidade Imunológica , DNA Recombinante/administração & dosagem , Feminino , Vetores Genéticos , Fatores Imunológicos/administração & dosagem , Injeções , Interferon gama/biossíntese , Interferon gama/sangue , Camundongos , Camundongos Endogâmicos C57BL , Neoplasias Experimentais/imunologia , Neoplasias Experimentais/prevenção & controle , Proteínas Recombinantes/administração & dosagem , Linfócitos T Citotóxicos/imunologia
12.
J Nutr ; 138(1): 115-22, 2008 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18156413

RESUMO

The prevalence of obesity, an established risk factor for several chronic diseases, including cancer, has risen dramatically over the past 4 decades. Dietary change and/or increased physical activity are the most commonly recommended lifestyle-based strategies for preventing or reversing obesity. One of several physiological systems that may be enhanced by dietary change and exercise is the immune system. In this study, we examined the effects of energy restriction (ER; 30% reduction relative to control energy intake) and/or exercise (EX; voluntary wheel running) on systemic and mucosal immune function. Female C57BL/6 mice were randomized into 4 treatment conditions: 1) controls consumed ad libitum (AL); 2) AL with access to running wheels (AL + EX); 3) 30% ER; and 4) 30% ER with access to running wheels (ER + EX). Both ER and EX reduced spleen weight and the number of splenic T and B lymphocytes (P < 0.05). ER enhanced natural killer (NK) cell function, but reduced concanavalin A (Con A)-induced T-cell proliferation (P < 0.05). In contrast, EX enhanced Con A-induced proliferation and cytokine production from Peyer's patch cells (P < 0.05). These data suggest that ER and EX enhance some, but not all, components of the immune system and are likely working via different biological mechanisms to regulate NK and T-cell function.


Assuntos
Ingestão de Energia/fisiologia , Imunidade nas Mucosas/imunologia , Atividade Motora/fisiologia , Animais , Composição Corporal , Feminino , Camundongos , Camundongos Endogâmicos C57BL , Tamanho do Órgão , Nódulos Linfáticos Agregados/citologia , Nódulos Linfáticos Agregados/metabolismo , Baço/anatomia & histologia , Linfócitos T
13.
Sports Med ; 38(4): 271-96, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18348589

RESUMO

The prevalence of obesity, an established epidemiological risk factor for many cancers, has risen steadily for the past several decades in the US and many other countries. Particularly alarming are the increasing rates of obesity among children, portending continuing increases in the rates of obesity and obesity-related cancers for many years to come. Modulation of energy balance, via increased physical activity, has been shown in numerous comprehensive epidemiological reviews to reduce cancer risk. Unfortunately, the effects and mechanistic targets of physical activity interventions on the carcinogenesis process have not been thoroughly characterized. Studies to date suggest that exercise can exert its cancer-preventive effects at many stages during the process of carcinogenesis, including both tumour initiation and progression. As discussed in this review, exercise may be altering tumour initiation events by modifying carcinogen activation, specifically by enhancing the cytochrome P450 system and by enhancing selective enzymes in the carcinogen detoxification pathway, including, but not limited to, glutathione-S-transferases. Furthermore, exercise may reduce oxidative damage by increasing a variety of anti-oxidant enzymes, enhancing DNA repair systems and improving intracellular protein repair systems. In addition to altering processes related to tumour initiation, exercise may also exert a cancer-preventive effect by dampening the processes involved in the promotion and progression stages of carcinogenesis, including scavenging reactive oxygen species (ROS); altering cell proliferation, apoptosis and differentiation; decreasing inflammation; enhancing immune function; and suppressing angiogenesis. A paucity of data exists as to whether exercise may be working as an anti-promotion strategy via altering ROS in initiated or preneoplastic models; therefore, no conclusions can be made about this possible mechanism. The studies directly examining cell proliferation and apoptosis have shown that exercise can enhance both processes, which is difficult to interpret in the context of carcinogenesis. Studies examining the relationship between exercise and chronic inflammation suggest that exercise may reduce pro-inflammatory mediators and reduce the state of low-grade, chronic inflammation. Additionally, exercise has been shown to enhance components of the innate immune response (i.e. macrophage and natural killer cell function). Finally, only a limited number of studies have explored the relationship between exercise and angiogenesis; therefore, no conclusions can be made currently about the role of exercise in the angiogenesis process as it relates to tumour progression. In summary, exercise can alter biological processes that contribute to both anti-initiation and anti-progression events in the carcinogenesis process. However, more sophisticated, detailed studies are needed to examine each of the potential mechanisms contributing to an exercise-induced decrease in carcinogenesis in order to determine the minimum dose, duration and frequency of exercise needed to yield significant cancer-preventive effects, and whether exercise can be used prescriptively to reverse the obesity-induced physiological changes that increase cancer risk.


Assuntos
Exercício Físico/fisiologia , Atividade Motora/fisiologia , Neoplasias/prevenção & controle , Humanos , Fatores de Risco
14.
Bladder Cancer ; 4(4): 429-440, 2018 Oct 29.
Artigo em Inglês | MEDLINE | ID: mdl-30417054

RESUMO

The Fourth Annual Albert Institute Bladder Cancer Care and Research Symposium was held from September 14th-16th in Houston, Texas. The symposium covered a range of topics relevant to bladder cancer, including basic science aspects of immunology and immunotherapy that inform clinical management; intravesical therapy for non-muscle invasive disease; understanding the nuances of carcinoma in situ; and optimizing patient care and outcomes following therapy. The moving landscape of bladder cancer from an industry perspective was also discussed. In the following sections we discuss intrinsic and extrinsic factors, including the immune microenvironment and sex bias, in the context of bladder cancer; how these influence tumor development, progression, and treatment strategies; and how the interpretation of immune features in relation to molecular subtypes informs both treatment decisions and response. We conclude with a summary of key points that will need to be addressed to ensure best use of new knowledge in this area for improved clinical management of patients with bladder cancer.

15.
Front Biosci ; 12: 4997-5029, 2007 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-17569626

RESUMO

A number of lifestyle factors that reduce cancer risk in the primary prevention setting may be potential new targets for use in combination with cancer vaccines. This review discusses the modulation of energy balance (physical activity, calorie restriction, and obesity prevention), and the supplementation with natural and synthetic analogs of vitamins A and E, as potential interventions for use in combination with cancer vaccines. Additionally, the pharmacologic manipulation of nutrient metabolism in the tumor microenvironment (e.g., arachidonic acid, arginine, tryptophan, and glucose metabolism) is discussed. This review includes a brief overview of the role of each agent in primary cancer prevention; outlines the effects of these agents on immune function, specifically adaptive and/or anti-tumor immune mechanisms, when known; and discusses the potential use of these interventions in combination with therapeutic cancer vaccines. Modulation of energy balance through exercise and strategies targeting nutrient metabolism in the tumor microenvironment represent the most promising interventions to partner with therapeutic cancer vaccines. Additionally, the use of vitamin E succinate and the retinoid X receptor-directed rexinoids in combination with cancer vaccines offer promise. In summary, a number of energy balance- and nutrition-related interventions are viable candidates for further study in combination with cancer vaccines.


Assuntos
Vacinas Anticâncer , Dieta , Exercício Físico , Neoplasias/prevenção & controle , Terapia Combinada , Ingestão de Energia/imunologia , Humanos , Imunidade Inata , Neoplasias/complicações , Neoplasias/imunologia , Obesidade/complicações , Obesidade/imunologia , Fatores de Risco
16.
Oncotarget ; 8(13): 20558-20571, 2017 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-28423552

RESUMO

The combined therapeutic potential of an immunocytokine designed to deliver IL-12 to the necrotic regions of solid tumors with an anti-PD-L1 antibody that disrupts the immunosuppressive PD-1/PD-L1 axis yielded a combinatorial benefit in multiple murine tumor models. The murine version of the immunocytokine, NHS-muIL12, consists of an antibody (NHS76) recognizing DNA/DNA-histone complexes, fused with two molecules of murine IL-12 (NHS-muIL12). By its recognition of exposed DNA, NHS-muIL12 targets IL-12 to the necrotic portions of tumors; it has a longer plasma half-life and better antitumor efficacy against murine tumors than recombinant murine IL-12. It is shown here that NHS-muIL12, in an IFN-γ‒dependent mechanism, upregulates mPD-L1 expression on mouse tumors, which could be construed as an immunosuppressive action. Yet concurrent therapy with NHS-muIL12 and an anti-PD-L1 antibody resulted in additive/synergistic antitumor effects in PD-L1‒expressing subcutaneously transplanted tumors (MC38, MB49) and in an intravesical bladder tumor model (MB49). Antitumor efficacy correlated with (a) with a higher frequency of tumor antigen-specific splenic CD8+ T cells and (b) enhanced T cell activation over a wide range of NHS-muIL12 concentrations. These findings suggest that combining NHS-muIL12 and an anti-PD-L1 antibody enhances T cell activation and T cell effector functions within the tumor microenvironment, significantly improving overall tumor regression. These results should provide the rationale to examine the combination of these agents in clinical studies.


Assuntos
Anticorpos Monoclonais/farmacologia , Antineoplásicos/farmacologia , Imunoterapia/métodos , Neoplasias Experimentais/tratamento farmacológico , Animais , Anticorpos Monoclonais Humanizados , Modelos Animais de Doenças , Sinergismo Farmacológico , Ensaio de Imunoadsorção Enzimática , ELISPOT , Imuno-Histoquímica , Interleucina-12/imunologia , Interleucina-12/farmacologia , Ativação Linfocitária/efeitos dos fármacos , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Neoplasias Experimentais/imunologia , Proteínas Recombinantes de Fusão/farmacologia , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia
17.
Oncotarget ; 8(43): 73469-73482, 2017 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-29088720

RESUMO

Immunotherapy was significantly enhanced in a murine tumor model by combining a vaccine with a fusion protein designed to target the glucocorticoid-induced tumor necrosis factor (TNF) receptor related gene (GITR) on the surface of T cells. The recombinant poxvirus-based vaccine platform included Modified Vaccinia virus Ankara (rMVA) and fowlpox (rF) vectors as the driver immunogens both engineered to express the human carcinoembryonic antigen (CEA) and three murine costimulatory molecules B7.1, ICAM-1, LFA-3 (designated TRICOM). In previous studies, mice expressing human CEA as a transgene (CEA.Tg mice) vaccinated with rMVA/rF-CEA-TRICOM overcame CEA immune tolerance by inducing anti-CEA‒specific immunity and regression of CEA-expressing tumors. The murine GITR ligand fusion protein (mGITRL-FP) consisted of a mouse IgG2a Fc region, a yeast-derived coiled GCN4 pII and the extracellular GITR-binding domain of murine GITR ligand. The design maximized valency and the potential to agonize the GITR receptor. Combined treatment of the vaccine and mGITRL-FP mediated a more robust tumor regression, leading to sustained improvement in overall survival. The enhanced immunotherapeutic effect was linked to the generation of a strong CD8+ T cell antitumor immune response. A treatment schedule with mGITRL-FP administered prior to the priming rMVA-CEA-TRICOM vaccination was of paramount importance. The mechanism of action for the enhanced antitumor effects resided in the depletion of immune cells, particularly FoxP3+ regulatory T cells, that express high GITR levels following activation. The results provide evidence that targeting GITR with mGITRL-FP in concert with a cancer vaccine represents a potential novel approach to more effective immunotherapy.

18.
Curr Pharm Des ; 12(3): 351-61, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16454749

RESUMO

For the immune system to mount an effective antitumor T-cell response, an adequate number of T-cells specific for the antigens expressed by the malignancy must be activated [1]. Since most antigens expressed by tumors are "self"-antigens, tumor antigens often lack endogenous immunogenicity and thus do not sufficiently activate T-cells to levels that can mediate tumor eradication. In addition, virtually all solid tumor cells lack the costimulatory molecules necessary to activate tumor-specific T-cells. Approaches that stimulate immune responses to these tumor antigens have the potential to alter this poor responsiveness. This theory has promoted the use of active immunotherapy to generate immune responses against tumor-associated antigens (TAAs) for the treatment of cancer. As one such vaccine strategy, we have utilized poxviruses as delivery vehicles for TAAs in combination with T-cell costimulatory molecules. Initial studies have demonstrated that the insertion of costimulatory molecule trangenes into viral vectors, along with a TAA transgene, greatly enhances the immune response to the antigen. Using this approach, a TRIad of COstimulatory Molecules (TRICOM; B7-1, ICAM-1 and LFA-3) has been shown to enhance T-cell responses to TAAs to levels far greater than any one or two of the costimulatory molecules in combination. In this article, preclinical findings and recent clinical applications of TRICOM-based vaccines as a cancer immunotherapy are reviewed.


Assuntos
Vacinas Anticâncer/uso terapêutico , Imunoterapia/métodos , Neoplasias/terapia , Animais , Ensaios Clínicos como Assunto , Terapia Combinada , Humanos , Neoplasias/fisiopatologia , Neoplasias/prevenção & controle , Neoplasias/radioterapia , Transdução de Sinais/efeitos dos fármacos , Linfócitos T/imunologia , Vacinação , Vacinas Sintéticas/uso terapêutico
19.
Front Biosci ; 11: 788-803, 2006 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-16146771

RESUMO

Tumor-associated antigens (TAAs) are by definition either weakly immunogenic or functionally nonimmunogenic. Therefore, efforts have concentrated on the development of vaccine strategies in which the presentation of TAAs to the immune system results in far greater activation of T cells than that occurring naturally in the host. Several strategies are being explored in our laboratory and others to enhance the immunogenicity of TAAs. These are: (a) placing the gene coding for the tumor antigen, as a transgene, into poxvirus vectors. (b) The use of diversified prime and boost vaccine strategies employing two different types of poxvirus vectors. (c) The use of T-cell costimulation; accomplished by placing transgenes for different T-cell costimulation molecules into viral vectors along with the transgenes for the TAA. (d) Altering the amino acid sequence of the TAA to enhance the host immune response. (e) The use of cytokines, and in particular GM-CSF, as a biologic adjuvant. This review will focus on the current state of the use of costimulatory molecules as adjuvants for immunotherapy, and in particular, as immunomodulators for cancer vaccines.


Assuntos
Adjuvantes Imunológicos/uso terapêutico , Imunoterapia/métodos , Neoplasias/prevenção & controle , Animais , Antígeno B7-1/metabolismo , Antígenos CD58/metabolismo , Vacinas Anticâncer , Ensaios Clínicos como Assunto , Citocinas/metabolismo , Vetores Genéticos , Fator Estimulador de Colônias de Granulócitos e Macrófagos/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Neoplasias/terapia , Poxviridae/genética , Transdução de Sinais , Linfócitos T/metabolismo , Transgenes
20.
Cancer Res ; 62(23): 6944-51, 2002 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-12460911

RESUMO

By virtue of its tissue-specific expression, carcinoembryonic antigen (CEA) is an important self, tumor-associated antigen, which is expressed by different human adenocarcinomas and also serves as a target for active-specific immunotherapy. Similar to humans, CEA expression in mice transgenic for the human CEA gene (CEA.Tg) occurs predominantly along the gastrointestinal tract. CEA.Tg mice were crossed with mice bearing a mutation in the Apc gene (MIN mice), and the CEA.Tg/MIN progeny developed multiple intestinal neoplasms, which overexpress CEA to levels that are reminiscent of those reported for tubulovillous intestinal adenomas from patients. CEA.Tg/MIN mice were vaccinated with an aggressive diversified prime/boost vaccine regimen: (a) a primary vaccine consisting of recombinant vaccinia virus-expressing CEA and a triad of costimulatory molecules (TRICOM): B7.1, ICAM-1, and LFA-3 (rV-CEA-TRICOM); and (b) a booster vaccine using CEA-TRICOM in a recombinant avipox (fowlpox) virus (rF-CEA-TRICOM). Granulocyte/macrophage colony-stimulating factor was administered as a biological adjuvant with all vaccinations, either as a recombinant protein (with rV-CEA-TRICOM) or as a recombinant avipox virus (with rF-CEA-TRICOM). That vaccine regimen generated strong CEA-specific host immune responses in CEA.Tg/MIN mice, which resulted in (a) a delayed onset of adult anemia and weight loss, (b) a significant reduction in the number of intestinal tumors, and (c) improved overall survival. No evidence of autoimmunity directed against normal tissues expressing CEA was observed in mice in which the CEA-based vaccine significantly reduced intestinal tumor load. The CEA.Tg/MIN mice present a clinically relevant model in which different CEA-based vaccine strategies can be tested on the spontaneous onset of intestinal tumorigenesis.


Assuntos
Vacinas Anticâncer/imunologia , Antígeno Carcinoembrionário/imunologia , Neoplasias Intestinais/imunologia , Adjuvantes Imunológicos/farmacologia , Animais , Autoimunidade/imunologia , Antígeno B7-1/genética , Antígeno B7-1/imunologia , Peso Corporal/imunologia , Antígenos CD58/genética , Antígenos CD58/imunologia , Vacinas Anticâncer/genética , Vacinas Anticâncer/uso terapêutico , Antígeno Carcinoembrionário/genética , Feminino , Fator Estimulador de Colônias de Granulócitos e Macrófagos/farmacologia , Hematócrito , Humanos , Imuno-Histoquímica , Molécula 1 de Adesão Intercelular/genética , Molécula 1 de Adesão Intercelular/imunologia , Neoplasias Intestinais/genética , Neoplasias Intestinais/patologia , Neoplasias Intestinais/prevenção & controle , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA