Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
Intervalo de ano de publicação
1.
Anat Rec (Hoboken) ; 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37528640

RESUMO

The vertebrate respiratory system is challenging to study. The complex relationship between the lungs and adjacent tissues, the vast structural diversity of the respiratory system both within individuals and between taxa, its mobility (or immobility) and distensibility, and the difficulty of quantifying and visualizing functionally important internal negative spaces have all impeded descriptive, functional, and comparative research. As a result, there is a relative paucity of three-dimensional anatomical information on this organ system in all vertebrate groups (including humans) relative to other regions of the body. We present some of the challenges associated with evaluating and visualizing the vertebrate respiratory system using computed and micro-computed tomography and its subsequent digital segmentation. We discuss common mistakes to avoid when imaging deceased and live specimens and various methods for merging manual and threshold-based segmentation approaches to visualize pulmonary tissues across a broad range of vertebrate taxa, with a particular focus on sauropsids (reptiles and birds). We also address some of the recent work in comparative evolutionary morphology and medicine that have used these techniques to visualize respiratory tissues. Finally, we provide a clinical study on COVID-19 in humans in which we apply modeling methods to visualize and quantify pulmonary infection in the lungs of human patients.

2.
Front Med (Lausanne) ; 8: 629134, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33732718

RESUMO

Chest X-ray imaging technology used for the early detection and screening of COVID-19 pneumonia is both accessible worldwide and affordable compared to other non-invasive technologies. Additionally, deep learning methods have recently shown remarkable results in detecting COVID-19 on chest X-rays, making it a promising screening technology for COVID-19. Deep learning relies on a large amount of data to avoid overfitting. While overfitting can result in perfect modeling on the original training dataset, on a new testing dataset it can fail to achieve high accuracy. In the image processing field, an image augmentation step (i.e., adding more training data) is often used to reduce overfitting on the training dataset, and improve prediction accuracy on the testing dataset. In this paper, we examined the impact of geometric augmentations as implemented in several recent publications for detecting COVID-19. We compared the performance of 17 deep learning algorithms with and without different geometric augmentations. We empirically examined the influence of augmentation with respect to detection accuracy, dataset diversity, augmentation methodology, and network size. Contrary to expectation, our results show that the removal of recently used geometrical augmentation steps actually improved the Matthews correlation coefficient (MCC) of 17 models. The MCC without augmentation (MCC = 0.51) outperformed four recent geometrical augmentations (MCC = 0.47 for Data Augmentation 1, MCC = 0.44 for Data Augmentation 2, MCC = 0.48 for Data Augmentation 3, and MCC = 0.49 for Data Augmentation 4). When we retrained a recently published deep learning without augmentation on the same dataset, the detection accuracy significantly increased, with a χ McNema r ' s statistic 2 = 163 . 2 and a p-value of 2.23 × 10-37. This is an interesting finding that may improve current deep learning algorithms using geometrical augmentations for detecting COVID-19. We also provide clinical perspectives on geometric augmentation to consider regarding the development of a robust COVID-19 X-ray-based detector.

3.
Radiol Cardiothorac Imaging ; 2(5): e200280, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33778626

RESUMO

PURPOSE: To determine the utility of chest radiography in aiding clinical diagnosis of coronavirus disease 2019 (COVID-19) utilizing reverse-transcription polymerase chain reaction (RT-PCR) as the standard of comparison. MATERIALS AND METHODS: A retrospective study was performed of persons under investigation for COVID-19 presenting to this institution during the exponential growth phase of the COVID-19 outbreak in New Orleans (March 13-25, 2020). Three hundred seventy-six in-hospital chest radiographic examinations for 366 individual patients were reviewed along with concurrent RT-PCR tests. Two experienced radiologists categorized each chest radiograph as characteristic, nonspecific, or negative in appearance for COVID-19, utilizing well-documented COVID-19 imaging patterns. Chest radiograph categorization was compared against RT-PCR results to determine the utility of chest radiography in diagnosing COVID-19. RESULTS: Of the 366 patients, the study consisted of 178 male (49%) and 188 female (51%) patients with a mean age of 52.7 years (range, 17 to 98 years). Of the 376 chest radiographic examinations, 37 (10%) exhibited the characteristic COVID-19 appearance; 215 (57%) exhibited the nonspecific appearance; and 124 (33%) were considered negative for a pulmonary abnormality. Of the 376 RT-PCR tests evaluated, 200 (53%) were positive and 176 (47%) were negative. RT-PCR tests took an average of 2.5 days ± 0.7 to provide results. Sensitivity and specificity for correctly identifying COVID-19 with a characteristic chest radiographic pattern was 15.5% (31/200) and 96.6% (170/176), with a positive predictive value and negative predictive value of 83.8% (31/37) and 50.1% (170/339), respectively. CONCLUSION: The presence of patchy and/or confluent, bandlike ground-glass opacity or consolidation in a peripheral and mid to lower lung zone distribution on a chest radiograph obtained in the setting of pandemic COVID-19 was highly suggestive of severe acute respiratory syndrome coronavirus 2 infection and should be used in conjunction with clinical judgment to make a diagnosis.© RSNA, 2020.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA