Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 107
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(7): 2691-2697, 2023 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-36800391

RESUMO

Despite widespread implementation of watershed nitrogen reduction programs across the globe, nitrogen levels in many surface waters remain high. Watershed legacy nitrogen storage, i.e., the long-term retention of nitrogen in soils and groundwater, is one of several explanations for this lack of progress. However scientists and water managers are ill-equipped to estimate how legacy nitrogen moderates in-stream nitrogen responses to land conservation practices, largely because modeling tools and associated long-term monitoring approaches to answering these questions remain inadequate. We demonstrate the need for improved watershed models to simulate legacy nitrogen processes and offer modeling solutions to support long-term nitrogen-based sustainable land management across the globe.


Assuntos
Água Subterrânea , Qualidade da Água , Nitrogênio/análise , Solo , Monitoramento Ambiental
2.
Environ Sci Technol ; 57(26): 9822-9831, 2023 07 04.
Artigo em Inglês | MEDLINE | ID: mdl-37345945

RESUMO

River basin-scale wetland restoration and creation is a primary management option for mitigating nitrogen-based water quality challenges. However, the magnitude of nitrogen reduction that will result from adding wetlands across large river basins is uncertain, partly because the areal extent, location, and physical and functional characteristics of the wetlands are unknown. We simulated over 3600 wetland restoration scenarios across the ∼450,000 km2 Upper Mississippi River Basin (UMRB) depicting varied assumptions for wetland areal extent, physical and functional characteristics, and placement strategy. These simulations indicated that restoring wetlands will reduce local nitrate yields and nitrate loads at the UMRB outlet. However, the projected magnitude of nitrate reduction varied widely across disparate scenario assumptions─e.g., restoring 4500 km2 of wetlands (i.e., 1% of UMRB area) decreased mean annual nitrate loads at the UMRB outlet between 3 and 42%. Higher magnitude nitrate reductions correlated with best-case assumptions, particularly for characteristics controlling nitrate loading rates to the wetlands. These results show that simplified claims about basin-scale wetland-mediated water quality improvements discount the breadth of possible wetland impacts across disparate wetland physical and functional conditions and highlight a need for greater clarity regarding the likelihood of these conditions at river basin scales.


Assuntos
Rios , Áreas Alagadas , Nitratos , Qualidade da Água , Nitrogênio/análise
3.
J Environ Manage ; 279: 111506, 2021 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-33168300

RESUMO

Watershed-scale hydrologic models are frequently used to inform conservation and restoration efforts by identifying critical source areas (CSAs; alternatively 'hotspots'), defined as areas that export relatively greater quantities of nutrients and sediment. The CSAs can then be prioritized or 'targeted' for conservation and restoration to ensure efficient use of limited resources. However, CSA simulations from watershed-scale hydrologic models may be uncertain and it is critical that the extent and implications of this uncertainty be conveyed to stakeholders and decision makers. We used an ensemble of four independently developed Soil and Water Assessment Tool (SWAT) models and a SPAtially Referenced Regression On Watershed attributes (SPARROW) model to simulate CSA locations for flow, phosphorus, nitrogen, and sediment within the ~17,000-km2 Maumee River watershed at the HUC-12 scale. We then assessed uncertainty in CSA simulations determined as the variation in CSA locations across the models. Our application of an ensemble of models - differing with respect to inputs, structure, and parameterization - facilitated an improved accounting of CSA prediction uncertainty. We found that the models agreed on the location of a subset of CSAs, and that these locations may be targeted with relative confidence. However, models more often disagreed on CSA locations. On average, only 16%-46% of HUC-12 subwatersheds simulated as a CSA by one model were also simulated as a CSA by a different model. Our work shows that simulated CSA locations are highly uncertain and may vary substantially across models. Hence, while models may be useful in informing conservation and restoration planning, their application to identify CSA locations would benefit from comprehensive uncertainty analyses to avoid inefficient use of limited resources.


Assuntos
Fósforo , Solo , Hidrologia , Modelos Teóricos , Nitrogênio/análise , Fósforo/análise , Incerteza
4.
J Am Water Resour Assoc ; 55(3): 559-577, 2019 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34316250

RESUMO

Representing hydrologic connectivity of non-floodplain wetlands (NFWs) to downstream waters in process-based models is an emerging challenge relevant to many research, regulatory, and management activities. We review four case studies that utilize process-based models developed to simulate NFW hydrology. Models range from a simple, lumped parameter model to a highly complex, fully distributed model. Across case studies, we highlight appropriate application of each model, emphasizing spatial scale, computational demands, process representation, and model limitations. We end with a synthesis of recommended "best modeling practices" to guide model application. These recommendations include: (1) clearly articulate modeling objectives, and revisit and adjust those objectives regularly; (2) develop a conceptualization of NFW connectivity using qualitative observations, empirical data, and process-based modeling; (3) select a model to represent NFW connectivity by balancing both modeling objectives and available resources; (4) use innovative techniques and data sources to validate and calibrate NFW connectivity simulations; and (5) clearly articulate the limits of the resulting NFW connectivity representation. Our review and synthesis of these case studies highlights modeling approaches that incorporate NFW connectivity, demonstrates tradeoffs in model selection, and ultimately provides actionable guidance for future model application and development.

5.
Ecol Appl ; 28(4): 953-966, 2018 06.
Artigo em Inglês | MEDLINE | ID: mdl-29437239

RESUMO

Depressional wetlands of the extensive U.S. and Canadian Prairie Pothole Region afford numerous ecosystem processes that maintain healthy watershed functioning. However, these wetlands have been lost at a prodigious rate over past decades due to drainage for development, climate effects, and other causes. Options for management entities to protect the existing wetlands, and their functions, may focus on conserving wetlands based on spatial location vis-à-vis a floodplain or on size limitations (e.g., permitting smaller wetlands to be destroyed but not larger wetlands). Yet the effects of such management practices and the concomitant loss of depressional wetlands on watershed-scale hydrological, biogeochemical, and ecological functions are largely unknown. Using a hydrological model, we analyzed how different loss scenarios by wetland size and proximal location to the stream network affected watershed storage (i.e., inundation patterns and residence times), connectivity (i.e., streamflow contributing areas), and export (i.e., streamflow) in a large watershed in the Prairie Pothole Region of North Dakota, USA. Depressional wetlands store consequential amounts of precipitation and snowmelt. The loss of smaller depressional wetlands (<3.0 ha) substantially decreased landscape-scale inundation heterogeneity, total inundated area, and hydrological residence times. Larger wetlands act as hydrologic "gatekeepers," preventing surface runoff from reaching the stream network, and their modeled loss had a greater effect on streamflow due to changes in watershed connectivity and storage characteristics of larger wetlands. The wetland management scenario based on stream proximity (i.e., protecting wetlands 30 m and ~450 m from the stream) alone resulted in considerable landscape heterogeneity loss and decreased inundated area and residence times. With more snowmelt and precipitation available for runoff with wetland losses, contributing area increased across all loss scenarios. We additionally found that depressional wetlands attenuated peak flows; the probability of increased downstream flooding from wetland loss was also consistent across all loss scenarios. It is evident from this study that optimizing wetland management for one end goal (e.g., protection of large depressional wetlands for flood attenuation) over another (e.g., protecting of small depressional wetlands for biodiversity) may come at a cost for overall watershed hydrological, biogeochemical, and ecological resilience, functioning, and integrity.


Assuntos
Ciclo Hidrológico , Áreas Alagadas , Modelos Teóricos , North Dakota , Rios
6.
J Hydrol (Amst) ; 567: 668-683, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-31395990

RESUMO

A hydrologic model, calibrated using only streamflow data, can produce acceptable streamflow simulation at the watershed outlet yet unrealistic representations of water balance across the landscape. Recent studies have demonstrated the potential of multi-objective calibration using remotely sensed evapotranspiration (ET) and gaged streamflow data to spatially improve the water balance. However, methodological clarity on how to "best" integrate ET data and model parameters in multi-objective model calibration to improve simulations is lacking. To address these limitations, we assessed how a spatially explicit, distributed calibration approach that uses (1) remotely sensed ET data from the Moderate Resolution Imaging Spectroradiometer (MODIS) and (2) frequently overlooked biophysical parameters can improve the overall predictability of two key components of the water balance: streamflow and ET at different locations throughout the watershed. We used the Soil and Water Assessment Tool (SWAT), previously modified to represent hydrologic transport and filling-spilling of landscape depressions, in a large watershed of the Prairie Pothole Region, United States. We employed a novel stepwise series of calibration experiments to isolate the effects (on streamflow and simulated ET) of integrating biophysical parameters and spatially explicit remotely sensed ET data into model calibration. Results suggest that the inclusion of biophysical parameters involving vegetation dynamics and energy utilization mechanisms tend to increase model accuracy. Furthermore, we found that using a lumped, versus a spatially explicit, approach for integrating ET into model calibration produces a sub-optimal model state with no potential improvement in model performance across large spatial scales. However, when we utilized the same MODIS ET datasets but calibrated each sub-basin in the spatially explicit approach, water yield prediction uncertainty decreased, including a distinct improvement in the temporal and spatial accuracy of simulated ET and streamflow. This further resulted in a more realistic simulation of vegetation growth when compared to MODIS Leaf-Area Index data. These findings afford critical insights into the efficient integration of remotely sensed "big data" into hydrologic modeling and associated watershed management decisions. Our approach can be generalized and potentially replicated using other hydrologic models and remotely sensed data resources - and in different geophysical settings of the globe.

7.
Front Ecol Environ ; 15(6): 319-327, 2017 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-30505246

RESUMO

Wetlands across the globe provide extensive ecosystem services. However, many wetlands - especially those surrounded by uplands, often referred to as geographically isolated wetlands (GIWs) - remain poorly protected. Protection and restoration of wetlands frequently requires information on their hydrologic connectivity to other surface waters, and their cumulative watershed-scale effects. The integration of measurements and models can supply this information. However, the types of measurements and models that should be integrated are dependent on management questions and information compatibility. We summarize the importance of GIWs in watersheds and discuss what wetland connectivity means in both science and management contexts. We then describe the latest tools available to quantify GIW connectivity and explore crucial next steps to enhancing and integrating such tools. These advancements will ensure that appropriate tools are used in GIW decision making and maintaining the important ecosystem services that these wetlands support.

8.
Environ Res Commun ; 3: 1-10, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34746644

RESUMO

Wetland restoration is a primary management option for removing surplus nitrogen draining from agricultural landscapes. However, wetland capacity to mitigate nitrogen losses at large river-basin scales remains uncertain. This is largely due to a limited number of studies that address the cumulative and dynamic effects of restored wetlands across the landscape on downstream nutrient conditions. We analyzed wetland restoration impacts on modeled nitrate dynamics across 279 subbasins comprising the ∼0.5 million km2 Upper Mississippi River Basin (UMRB), USA, which covers eight states and houses ∼30 million people. Restoring ∼8,000 km2 of wetlands will reduce mean annual nitrate loads to the UMRB outlet by 12%, a substantial improvement over existing conditions but markedly less than widely cited estimates. Our lower wetland efficacy estimates are partly attributed to improved representation of processes not considered by preceding empirical studies - namely the potential for nitrate to bypass wetlands (i.e., via subsurface tile drainage) and be stored or transformed within the river network itself. Our novel findings reveal that wetlands mitigate surplus nitrogen basin-wide, yet they may not be as universally effective in tiled landscapes and because of river network processing.

9.
J Cell Biol ; 96(4): 1159-63, 1983 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-6682118

RESUMO

We have observed the presence of membrane junctions formed between the plasma membrane and cortical endoplasmic reticulum of mature, unactivated eggs of xenopus laevis. The parallel, paired membranes of the junction are separated by a 10-mn gap within which electron-dense material is present. This material occurs in patches with an average center-to-center distance of approximately 30 nm. These junctions are rare in immature (but fully grown) oocytes (approximately 2 percent of the plasma membrane is associated with junctions) and increase dramatically during progesterone-induced maturation. Junctions in the mature, unactivated egg are two to three times more abundant in the animal hemisphere (25-30 percent of the plasma membrane associated with junction) as compared with the vegetal hemisphere (10-15 percent). Junction density decreases rapidly to values characteristic of immature oocytes in response to egg activation. The plasma membrane-ER junctions of xenopus eggs are strikingly similar in structure to membrane junctions in muscle cells thought to be essential in the triggering of intracellular calcium release from the sarcoplasmic reticulum. In addition, the junctions' distinctive, animal-vegetal polarity of distribution, their dramatic appearance during maturation, and their disapperance during activation are correlated with previously documented patterns of calcium-mediated events in anuran eggs. We discuss several lines of evidence supporting the hypothesis that these junctions in xenopus eggs are sites that transduce extracellular events into intracellular calcium release during fertilization and activation of development.


Assuntos
Cálcio/metabolismo , Membrana Celular/fisiologia , Retículo Endoplasmático/ultraestrutura , Membranas Intracelulares/fisiologia , Animais , Feminino , Óvulo , Progesterona/farmacologia , Xenopus
10.
Eur J Ophthalmol ; 18(2): 304-8, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18320529

RESUMO

PURPOSE: To report the management and outcome of retinal reattachment surgery in retinochoroidal coloboma. METHODS: Four patients with retinochoroidal colobomata presented to the Bristol Eye Hospital (a UK tertiary referral center for vitreoretinal surgery) with retinal detachment. INTERVENTION: All were type II colobomatous detachments (three patients with type IIB, one patient with type IID). All eyes underwent vitrectomy with endolaser and/or cryotherapy and three eyes underwent scleral buckling. Two eyes had internal tamponade with gas (SF6, C3F8) while the other two had silicone oil. Endolaser was applied over healthy retinal pigment epithelium. RESULTS: At last follow-up, all (100%) remained attached, with no recurrences. Three patients achieved visual acuity of 6/120 or better and were able to perform satisfactory near work with appropriate magnifiers. The last patient began with hand movement vision and retained similar vision but subjectively felt more navigational. CONCLUSIONS: Good anatomic and functional outcomes can be achieved in this patient group with combined vitrectomy with or without scleral buckling surgery. Endolaser retinopexy is effective over healthy RPE at the margin of the coloboma combined with either gas or oil internal tamponade.


Assuntos
Corioide/anormalidades , Coloboma/cirurgia , Retina/anormalidades , Descolamento Retiniano/cirurgia , Recurvamento da Esclera , Vitrectomia , Adolescente , Adulto , Pré-Escolar , Criocirurgia , Feminino , Fluorocarbonos/administração & dosagem , Humanos , Fotocoagulação a Laser , Masculino , Pessoa de Meia-Idade , Óleos de Silicone/administração & dosagem , Hexafluoreto de Enxofre/administração & dosagem , Acuidade Visual
11.
J Hydrol X ; 12018 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-31448367

RESUMO

Wetlands are often dominant features in low relief, depressional landscapes and provide an array of hydrologically driven ecosystem services. However, contemporary models do not adequately represent the role of spatially distributed wetlands in watershed-scale water storage and flows. Such tools are critical to better understand wetland hydrological, biogeochemical, and biological functions and predict management and policy outcomes at varying spatial scales. To develop a new approach for simulating depressional landscapes, we modified the Soil and Water Assessment Tool (SWAT) model to incorporate improved representations of depressional wetland structure and hydrological processes. Specifically, we refined the model to incorporate: (1) water storage capacity and surface flowpaths of individual wetlands and (2) local wetland surface and subsurface exchange. We utilized this model, termed SWAT-DSF (DSF for Depressional Storage and Flows), to simulate the ~289 km2 Greensboro watershed within the Delmarva Peninsula of the US Coastal Plain. Model calibration and verification used both daily streamflow observations and remotely sensed surface water extent data (ca. 2-week temporal resolution), allowing us to assess model performance with respect to both streamflow and watershed inundation patterns. Our findings demonstrate that SWAT-DSF can successfully replicate distributed wetland processes and resultant watershed-scale hydrology. SWAT-DSF provides improved temporal and spatial characterization of watershed-scale water storage and flows in depressional landscapes, providing a new tool to quantify wetland functions at broad spatial scales.

12.
Hydrol Process ; 32(2): 305-313, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29681686

RESUMO

Globally, hydrologic modifications such as ditching and subsurface drainage have significantly reduced wetland water storage capacity (i.e., volume of surface water a wetland can retain) and consequent wetland functions. While wetland area has been well documented across many landscapes and used to guide restoration efforts, few studies have directly quantified the associated wetland storage capacity. Here, we present a novel raster-based approach to quantify both contemporary and potential (i.e., restorable) storage capacities of individual depressional basins across landscapes. We demonstrate the utility of this method by applying it to the Delmarva Peninsula, a region punctuated by both depressional wetlands and drainage ditches. Across the entire peninsula, we estimated that restoration (i.e., plugging ditches) could increase storage capacity by 80%. Focusing on an individual watershed, we found that over 59% of restorable storage capacity occurs within 20 m of the drainage network, and that 93% occurs within 1 m elevation of the drainage network. Our demonstration highlights widespread ditching in this landscape, spatial patterns of both contemporary and potential storage capacities, and clear opportunities for hydrologic restoration. In Delmarva and more broadly, our novel approach can inform targeted landscape-scale conservation and restoration efforts to optimize hydrologically mediated wetland functions.

16.
FEMS Microbiol Lett ; 175(1): 127-32, 1999 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-10361717

RESUMO

Wheat straw cultures of the brown rot fungi Gloeophyllum striatum and G. trabeum degraded 2,4-dichlorophenol and pentachorophenol. Up to 54% and 27% 14CO2, respectively, were liberated from uniformly 14C-labeled substrates within 6 weeks. Under identical conditions Trametes versicolor, a typical white rot species employed as reference, evolved up to 42% and 43% 14CO2 and expressed high activities of laccase, manganese peroxidase, and manganese-independent peroxidase. No such activity could be detected in straw or liquid cultures of Gloeophyllum. Moreover, G. striatum degraded both chlorophenols most efficiently under non-cometabolic conditions, i.e. on a defined mineral medium lacking sources of carbon, nitrogen and phosphate.


Assuntos
Basidiomycota/metabolismo , Clorofenóis/metabolismo , Pentaclorofenol/metabolismo , Basidiomycota/enzimologia , Basidiomycota/crescimento & desenvolvimento , Biodegradação Ambiental , Dióxido de Carbono/metabolismo , Clorofenóis/farmacologia , Meios de Cultura , Lignina/metabolismo , Pentaclorofenol/farmacologia
17.
Br J Ophthalmol ; 75(6): 377-80, 1991 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-2043586

RESUMO

A case of severe visual field restriction complicating primary biliary cirrhosis is described. The clinical features demonstrated vitamin A deficiency which did not respond to oral supplements of vitamin A. Hepatic transplantation restored the visual fields to near normal.


Assuntos
Cirrose Hepática Biliar/fisiopatologia , Transplante de Fígado/fisiologia , Campos Visuais/fisiologia , Feminino , Angiofluoresceinografia , Humanos , Cirrose Hepática Biliar/complicações , Pessoa de Meia-Idade , Acuidade Visual/fisiologia , Deficiência de Vitamina A/diagnóstico , Deficiência de Vitamina A/etiologia
18.
Br J Ophthalmol ; 62(8): 543-6, 1978 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-687552

RESUMO

Three patients are described with foveal lesions resembling minute holes following trauma. The similarity of the lesions to foveomacular retinitis and solar retinopathy suggests that all these conditions produce a similar, localised neuroretinal lesion with sparing of the pigment epithelium. Loss of the photoreceptors at the fovea would be expected to produce a lesion resembling a small retinal hole.


Assuntos
Traumatismos Oculares/complicações , Fóvea Central , Macula Lutea , Retinite/etiologia , Ferimentos não Penetrantes/complicações , Adolescente , Adulto , Traumatismos Oculares/patologia , Fóvea Central/patologia , Humanos , Macula Lutea/patologia , Masculino , Retinite/patologia , Luz Solar , Ferimentos não Penetrantes/patologia
19.
Br J Ophthalmol ; 60(10): 673-5, 1976 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1009038

RESUMO

A case of reduplication of the lens with uveal coloboma is described. This is a rare condition and, unlike the two previously reported cases, the other ocular structures and adnexae appeared normal.


Assuntos
Coloboma , Iris/anormalidades , Cristalino/anormalidades , Humanos , Lactente , Cristalino/embriologia , Masculino
20.
Br J Ophthalmol ; 59(10): 586-9, 1975 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-1191616

RESUMO

The dental burr rotated by an electric drill is the quickest, safest, and most precise form of treatment for corneal rust rings. It enables complete removal of the corneal rust at a single treatment and leaves a smooth crater that is no larger than the original rust ring. Pain relief is more rapid after electric drill removal; this is probably related to the complete removal of the rust. Epithelial and stromal healing are marginally faster than after manual removal and the patients' duration of attendance is less. The ideal drill is a slim straight instrument, which rotates dental burrs and is operated by a light finger pressure. A brake which stops drill rotation on lifting the finger is a useful safety feature.


Assuntos
Córnea/cirurgia , Corpos Estranhos no Olho/cirurgia , Instrumentos Cirúrgicos , Instrumentos Odontológicos , Compostos Ferrosos/efeitos adversos , Humanos , Dor Pós-Operatória , Complicações Pós-Operatórias , Cicatrização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA