Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 29
Filtrar
1.
Int J Mol Sci ; 24(17)2023 Aug 24.
Artigo em Inglês | MEDLINE | ID: mdl-37685990

RESUMO

Calcium-dependent protein kinases (CDPKs) are one of the main Ca2+ decoders in plants. Among them, Arabidopsis thaliana AtCPK1 is one of the most studied CDPK genes as a positive regulator of plant responses to biotic and abiotic stress. The mutated form of AtCPK1, in which the autoinhibitory domain is inactivated (AtCPK1-Ca), provides constitutive kinase activity by mimicking a stress-induced increase in the Ca2+ flux. In the present study, we performed a proteomic analysis of Vitis amurensis calli overexpressing the AtCPK1-Ca form using untransformed calli as a control. In our previous studies, we have shown that the overexpression of this mutant form leads to the activation of secondary metabolism in plant cell cultures, including an increase in resveratrol biosynthesis in V. amurensis cell cultures. We analyzed upregulated and downregulated proteins in control and transgenic callus cultures using two-dimensional gel electrophoresis, and Matrix-assisted laser desorption and ionization time-of-flight mass spectrometry (MALDI-TOF). In calli transformed with AtCPK1-Ca, an increased amounts of pathogenesis-related proteins were found. A quantitative real-time PCR analysis confirmed this result.


Assuntos
Arabidopsis , Vitis , Arabidopsis/genética , Técnicas de Cultura de Células , Proteoma/genética , Proteômica , Vitis/genética
2.
Int J Mol Sci ; 24(14)2023 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-37511000

RESUMO

Aristolochia manshuriensis is a relic liana, which is widely used in traditional Chinese herbal medicine and is endemic to the Manchurian floristic region. Since this plant is rare and slow-growing, alternative sources of its valuable compounds could be explored. Herein, we established hairy root cultures of A. manshuriensis transformed with Agrobacterium rhizogenes root oncogenic loci (rol)B and rolC genes. The accumulation of nitrogenous secondary metabolites significantly improved in transgenic cell cultures. Specifically, the production of magnoflorine reached up to 5.72 mg/g of dry weight, which is 5.8 times higher than the control calli and 1.7 times higher than in wild-growing liana. Simultaneously, the amounts of aristolochic acids I and II, responsible for the toxicity of Aristolochia species, decreased by more than 10 fold. Consequently, the hairy root extracts demonstrated pronounced cytotoxicity against human glioblastoma cells (U-87 MG), cervical cancer cells (HeLa CCL-2), and colon carcinoma (RKO) cells. However, they did not exhibit significant activity against triple-negative breast cancer cells (MDA-MB-231). Our findings suggest that hairy root cultures of A. manshuriensis could be considered for the rational production of valuable A. manshuriensis compounds by the modification of secondary metabolism.


Assuntos
Aristolochia , Humanos , Plantas , Medicina Tradicional Chinesa , China , Raízes de Plantas/metabolismo
3.
Molecules ; 28(9)2023 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-37175131

RESUMO

Sea urchins (Tripneustes gratilla) are among the most highly prized seafood products in Vietnam because of their nutritional value and medicinal properties. In this research, lipid classes and the phospholipid (PL) molecular species compositions from the body and eggs of T. gratilla collected in Hon Tam, Nha Trang, Khanh Hoa, Vietnam, were investigated. Hydrocarbon and wax (HW), triacylglycerol (TG), mono- and diacylglycerol (MDAG), free fatty acid (FFA), sterol (ST), polar lipid (PoL), and monoalkyl-diacylglycerol are the major lipid classes. In PL, five main glycerophospholipid classes have been identified, in which 137 PL molecular species were detected in the body and eggs of T. gratilla, including 20 inositol glycerophospholipids (PI), 11 serine glycerophospholipids (PS), 22 ethanolamine glycerophospholipids (PE), 11 phosphatidic acids (PA), and 73 choline glycerophospholipids (PC). PI 18:0/20:4, PS 20:1/20:1, PE 18:1e/20:4, PA 20:1/20:1, and PC 18:0e/20:4 are the most abundant species with the highest content values of 38.65-48.19%, 42.48-44.41%, 41.21-40.03%, 52.42-52.60%, and 7.77-7.18% in each class of the body-eggs, respectively. Interestingly, PL molecules predominant in the body sample were also found in the egg sample. The molecular species with the highest content account for more than 40% of the total species in each molecular class. However, in the PC class containing 73 molecular species, the highest content species amounted to only 7.77%. For both the body and egg TL samples of the sea urchin T. gratilla, a substantial portion of C20:4n polyunsaturated fatty acid was found in PI, PE, and PC, but C16, C18, C20, and C22 saturated fatty acids were reported at low levels. The most dominant polyunsaturated fatty acid in PI, PE, and PC was tetracosapolyenoic C20, while unsaturated fatty acid C20:1 was the most dominant in PS and PA. To our knowledge, this is the first time that the chemical properties of TL and phospholipid molecular species of the PoL of Vietnamese sea urchin (T. gratilla) have been studied.


Assuntos
Diglicerídeos , Fosfolipídeos , Animais , Ácidos Graxos/química , Ácidos Graxos Insaturados , Glicerofosfolipídeos , Fosfolipídeos/química , Ouriços-do-Mar , Alimentos Marinhos , Vietnã
4.
Molecules ; 28(6)2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-36985562

RESUMO

In this study, we isolated a new isoflavanostilbene maackiapicevestitol (1) as a mixture of two stable conformers 1a and 1b as well as five previously known dimeric and monomeric stilbens: piceatannol (2), maackin (3), scirpusin A (4), maackiasine (5), and maackolin (6) from M. amurensis heartwood, using column chromatography on polyamide, silicagel, and C-18. The structures of these compounds were elucidated by NMR, HR-MS, and CD techniques. Maksar® obtained from M. amurensis heartwood and polyphenolics 1-6 possessed moderate anti-HSV-1 activity in cytopathic effect (CPE) inhibition and RT-PCR assays. A model of PQ-induced neurotoxicity was used to study the neuroprotective potential of polyphenolic compounds from M. amurensis. Maksar® showed the highest neuroprotective activity and increased cell viability by 18% at a concentration of 10 µg/mL. Maackolin (6) also effectively increased the viability of PQ-treated Neuro-2a cells and the value of mitochondrial membrane potential at concentrations up to 10 µΜ. Maksar® and compounds 1-6 possessed higher FRAP and DPPH-scavenging effects than quercetin. However, only compounds 1 and 4 at concentrations of 10 µM as well as Maksar® (10 µg/mL) statistically significantly reduced the level of intracellular ROS in PQ-treated Neuro-2a cells.


Assuntos
Maackia , Extratos Vegetais , Maackia/química , Extratos Vegetais/farmacologia , Extratos Vegetais/química , Quercetina
5.
Planta ; 256(1): 8, 2022 Jun 11.
Artigo em Inglês | MEDLINE | ID: mdl-35690636

RESUMO

MAIN CONCLUSION: Increased flavonol accumulation and enhanced drought tolerance in A4-rolB-overexpressing plants can be explained by the cooperative action of the SA and ROS signalling pathways. Clarification of function of the A4-rolB plast gene from pRiA4 of Rhizobium rhizogenes will allow a better understanding of the biological principles of the natural transformation process and its use as a tool for plant bioengineering. In the present study, we investigated whether the overexpression of A4-rolB gene could regulate two important processes, flavonoid biosynthesis and drought tolerance. In addition, we investigated some aspects of the possible machinery of the A4-rolB-induced changes in plant physiology, such as crosstalk of the major signalling systems. Based on the data obtained in this work, it can be presumed that constitutive overexpression of A4-rolB leads to the activation of the salicylic acid signalling system. An increase in flavonol accumulation and enhanced drought tolerance can be explained by the cooperative action of SA and ROS pathways.


Assuntos
Arabidopsis , Agrobacterium , Arabidopsis/genética , Secas , Flavonoides/metabolismo , Flavonóis/metabolismo , Homeostase , Hormônios/metabolismo , Plantas Geneticamente Modificadas/metabolismo , Espécies Reativas de Oxigênio/metabolismo
6.
Mar Drugs ; 20(9)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36135767

RESUMO

The sea cucumber Apostichopus japonicus, being a target species of commercial fisheries and aquaculture, is also used as a source of biologically active compounds with high pharmacological potential. By the methods of high-performance liquid chromatography with high resolution mass spectrometry, we analyzed the major structural phospholipids (PL)-glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)-in tissues of wild and cultured sea cucumbers. The intestines of the wild and cultured animals differed from the other tissues by an elevated content of molecular species of PE, PC, and PS with 22:6n-3 fatty acid. The respiratory trees of the studied animals contained a high level of odd-chain PI and PI with 20:4n-6. The exposure to n-3 PUFA-deficient diet resulted in substantial changes in the molecular species profile of PL of the wild and cultured animals. The cultured sea cucumbers showed a significant decrease in the 20:5n-3 content in all four studied PL classes. A replacement of 20:5n-3 by 20:4n-6 occurred in PE, PC, and PI. The decrease in the level of molecular species of PS with 20:5n-3 was compensated by an increase in the level of monounsaturated long-chain PS. The diet of cultured sea cucumbers is a crucial factor for enhancing the nutritional properties of the product obtained from them.


Assuntos
Ácidos Graxos Ômega-3 , Stichopus , Animais , Dieta , Ácidos Graxos/análise , Fosfolipídeos/química
7.
Mar Drugs ; 21(1)2022 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-36662206

RESUMO

The inhibitor of human α-N-acetylgalactosaminidase (α-NaGalase) was isolated from a water-ethanol extract of the brown algae Costaria costata. Currently, tumor α-NaGalase is considered to be a therapeutic target in the treatment of cancer. According to NMR spectroscopy and mass spectrometric analysis, it is a high-molecular-weight fraction of phlorethols with a degree of polymerization (DP) equaling 11-23 phloroglucinols (CcPh). It was shown that CcPh is a direct inhibitor of α-NaGalases isolated from HuTu 80 and SK-MEL-28 cells (IC50 0.14 ± 0.008 and 0.12 ± 0.004 mg/mL, respectively) and reduces the activity of this enzyme in HuTu 80 and SK-MEL-28 cells up to 50% at concentrations of 15.2 ± 9.5 and 5.7 ± 1.6 µg/mL, respectively. Molecular docking of the putative DP-15 oligophlorethol (P15OPh) and heptaphlorethol (PHPh) with human α-NaGalase (PDB ID 4DO4) showed that this compound forms a complex and interacts directly with the Asp 156 and Asp 217 catalytic residues of the enzyme in question. Thus, brown algae phlorethol CcPh is an effective marine-based natural inhibitor of the α-NaGalase of cancer cells and, therefore, has high therapeutic potential.


Assuntos
Adenocarcinoma , Melanoma , Phaeophyceae , Humanos , alfa-N-Acetilgalactosaminidase , Simulação de Acoplamento Molecular , Phaeophyceae/química
8.
Int J Mol Sci ; 23(22)2022 Nov 11.
Artigo em Inglês | MEDLINE | ID: mdl-36430408

RESUMO

The B12-producing strains Pseudomonas nitroreducens DSM 1650 and Pseudomonas sp. CCUG 2519 (both formerly Pseudomonas denitrificans), with the most distributed pathway among bacteria for exogenous choline/betaine utilization, are promising recombinant hosts for the endogenous production of B12 precursor betaine by direct methylation of bioavailable glycine or non-proteinogenic ß-alanine. Two plasmid-based de novo betaine pathways, distinguished by their enzymes, have provided an expression of the genes encoding for N-methyltransferases of the halotolerant cyanobacterium Aphanothece halophytica or plant Limonium latifolium to synthesize the internal glycine betaine or ß-alanine betaine, respectively. These betaines equally allowed the recombinant pseudomonads to grow effectively and to synthesize a high level of cobalamin, as well as to increase their protective properties against abiotic stresses to a degree comparable with the supplementation of an exogenous betaine. Both de novo betaine pathways significantly enforced the protection of bacterial cells against lowering temperature to 15 °C and increasing salinity to 400 mM of NaCl. However, the expression of the single plant-derived gene for the ß-alanine-specific N-methyltransferase additionally increased the effectiveness of exogenous glycine betaine almost twofold on cobalamin biosynthesis, probably due to the Pseudomonas' ability to use two independent pathways, their own choline/betaine pathway and the plant ß-alanine betaine biosynthetic pathway.


Assuntos
Betaína , Colina , Betaína/metabolismo , Pseudomonas/genética , Pseudomonas/metabolismo , Estresse Fisiológico/genética , Metiltransferases/metabolismo , beta-Alanina , Vitamina B 12
9.
Int J Mol Sci ; 23(23)2022 Dec 01.
Artigo em Inglês | MEDLINE | ID: mdl-36499423

RESUMO

Ipomoea batatas is a vital root crop and a source of caffeoylquinic acid derivatives (CQAs) with potential health-promoting benefits. As a naturally transgenic plant, I. batatas contains cellular T-DNA (cT-DNA) sequence homologs of the Agrobacterium rhizogenes open reading frame (ORF)14, ORF17n, rooting locus (Rol)B/RolC, ORF13, and ORF18/ORF17n of unknown function. This study aimed to evaluate the effect of abiotic stresses (temperature, ultraviolet, and light) and chemical elicitors (methyl jasmonate, salicylic acid, and sodium nitroprusside) on the biosynthesis of CQAs and cT-DNA gene expression in I. batatas cell culture as a model system. Among all the applied treatments, ultraviolet irradiation, methyl jasmonate, and salicylic acid caused the maximal accumulation of secondary compounds. We also discovered that I. batatas cT-DNA genes were not expressed in cell culture, and the studied conditions weakly affected their transcriptional levels. However, the Ib-rolB/C gene expressed under the strong 35S CaMV promoter increased the CQAs content by 1.5-1.9-fold. Overall, our results show that cT-DNA-encoded transgenes are not involved in stress- and chemical elicitor-induced CQAs accumulation in cell cultures of I. batatas. Nevertheless, overaccumulation of RolB/RolC transcripts potentiates the secondary metabolism of sweet potatoes through a currently unknown mechanism. Our study provides new insights into the molecular mechanisms linked with CQAs biosynthesis in cell culture of naturally transgenic food crops, i.e., sweet potato.


Assuntos
Ipomoea batatas , Ipomoea batatas/genética , Ipomoea batatas/metabolismo , Metabolismo Secundário , Plantas Geneticamente Modificadas/genética , Plantas Geneticamente Modificadas/metabolismo , Ácido Salicílico/farmacologia , Ácido Salicílico/metabolismo , DNA/metabolismo , Técnicas de Cultura de Células , Regulação da Expressão Gênica de Plantas
10.
Molecules ; 27(22)2022 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-36432088

RESUMO

During our ongoing efforts to investigate biotechnological sources of caffeoylquinic acid (CQA) metabolites, we discovered the plant Scorzonera radiata Fisch. (Asteraceae), which is able to produce callus cultures with high yield and extremely high stability. An actively growing callus line, designated as Sr-L1, retained the ability to produce 11 CQAs during long-term cultivation (more than 20 years). A total of 29 polyphenolic compounds were identified in the leaves and Sr-L1 callus culture of S. radiata, including CQAs, lignol derivatives, flavonoids, and dihydrostilbenes. The composition of CQAs in the Sr-L1 culture was identical to that in the S. radiata leaves. Sr-L1 calli did not produce flavonoids and dihydrostilbenes, but produced lignol derivatives, which were absent in leaves. The HPLC-UV-HRMS determination showed the presence of monoacyl derivatives of CQAs such as 5-CQA, 4-CQA, cis-5-CQA, and 5-O-p-coumaroylquinic acid in the Sr-L1 culture. Among diacyl derivatives, 3,4-diCQA, 3,5-diCQA, cis-3,5-diCQA, 4,5-diCQA, 3-O-p-coumaroyl-5-O-CQA, and 3-O-caffeoyl-5-O-p-coumaroylquinic acid were found. The content of 5-CQA reached 7.54 mg/g dry weight and the content of 3,5-diCQA was as high as 18.52 mg/g dry weight. 3,5-diCQA has been reported to be of high nutritional and pharmacological value, as it alleviates inflammatory pain, reverses memory impairment by preventing neuronal apoptosis, and counteracts excessive adipose tissue expansion, serving as an attractive treatment option for obesity. The high content of 3,5-diCQA and the exceptional stability of biosynthesis make callus cultures of S. radiata a promising source for the development of drugs and nutraceuticals.


Assuntos
Di-Hidroestilbenoides , Scorzonera , Ácido Quínico , Ácido Clorogênico , Flavonoides
11.
Mar Drugs ; 19(12)2021 Nov 25.
Artigo em Inglês | MEDLINE | ID: mdl-34940659

RESUMO

Marine invertebrates are a paraphyletic group that comprises more than 90% of all marine animal species. Lipids form the structural basis of cell membranes, are utilized as an energy reserve by all marine invertebrates, and are, therefore, considered important indicators of their ecology and biochemistry. The nutritional value of commercial invertebrates directly depends on their lipid composition. The lipid classes and fatty acids of marine invertebrates have been studied in detail, but data on their lipidomes (the profiles of all lipid molecules) remain very limited. To date, lipidomes or their parts are known only for a few species of mollusks, coral polyps, ascidians, jellyfish, sea anemones, sponges, sea stars, sea urchins, sea cucumbers, crabs, copepods, shrimp, and squid. This paper reviews various features of the lipid molecular species of these animals. The results of the application of the lipidomic approach in ecology, embryology, physiology, lipid biosynthesis, and in studies on the nutritional value of marine invertebrates are also discussed. The possible applications of lipidomics in the study of marine invertebrates are considered.


Assuntos
Invertebrados , Lipidômica , Animais , Organismos Aquáticos
12.
Int J Mol Sci ; 22(17)2021 Aug 27.
Artigo em Inglês | MEDLINE | ID: mdl-34502210

RESUMO

The present study reports a green chemistry approach for the rapid and easy biological synthesis of silver (Ag), gold (Au), and bimetallic Ag/Au nanoparticles using the callus extract of Lithospermum erythrorhizon as a reducing and capping agent. The biosynthesized nanoparticles were characterized with ultraviolet-visible (UV-Vis) spectroscopy, X-ray diffraction (XRD) analysis, and transmission electron microscopy (TEM). Our results showed the formation of crystalline metal nanostructures of both spherical and non-spherical shape. Energy dispersive X-ray (EDX) spectroscopy showed the characteristic peaks in the silver and gold regions, confirming the presence of the corresponding elements in the monometallic particles and both elements in the bimetallic particles. Fourier-transform infrared (FTIR) spectroscopy affirmed the role of polysaccharides and polyphenols of the L. erythrorhizon extract as the major reducing and capping agents for metal ions. In addition, our results showed that the polysaccharide sample and the fraction containing secondary metabolites isolated from L. erythrorhizon were both able to produce large amounts of metallic nanoparticles. The biosynthesized nanoparticles demonstrated cytotoxicity against mouse neuroblastoma and embryonic fibroblast cells, which was considerably higher for Ag nanoparticles and for bimetallic Ag/Au nanoparticles containing a higher molar ratio of silver. However, fibroblast migration was not significantly affected by any of the nanoparticles tested. The obtained results provide a new example of the safe biological production of metallic nanoparticles, but further study is required to uncover the mechanism of their toxicity so that the biomedical potency can be assessed.


Assuntos
Antineoplásicos/farmacologia , Ouro/química , Lithospermum/química , Nanopartículas Metálicas/administração & dosagem , Neuroblastoma/tratamento farmacológico , Extratos Vegetais/farmacologia , Prata/química , Animais , Antineoplásicos/química , Apoptose , Células Cultivadas , Nanopartículas Metálicas/química , Camundongos , Células NIH 3T3 , Neuroblastoma/patologia
13.
Mar Drugs ; 17(9)2019 Aug 25.
Artigo em Inglês | MEDLINE | ID: mdl-31450717

RESUMO

A simple approach toward the synthesis of the marine sponge derived pigment fascaplysin was used to obtain the marine alkaloids 3-bromofascaplysin and 3,10-dibromofascaplysin. These compounds were used for first syntheses of the alkaloids 14-bromoreticulatate and 14-bromoreticulatine. Preliminary bioassays showed that 14-bromoreticulatine has a selective antibiotic (to Pseudomonas aeruginosa) activity and reveals cytotoxicity toward human melanoma, colon, and prostate cancer cells. 3,10-Dibromofascaplysin was able to target metabolic activity of the prostate cancer cells, without disrupting cell membrane's integrity and had a wide therapeutic window amongst the fascaplysin alkaloids.


Assuntos
Alcaloides/farmacologia , Antibacterianos/farmacologia , Antineoplásicos/farmacologia , Indóis/farmacologia , Poríferos/química , Alcaloides/síntese química , Animais , Antibacterianos/síntese química , Antineoplásicos/síntese química , Linhagem Celular Tumoral , Técnicas de Química Sintética/métodos , Ensaios de Seleção de Medicamentos Antitumorais , Halogenação , Humanos , Indóis/síntese química , Testes de Sensibilidade Microbiana , Pseudomonas aeruginosa/efeitos dos fármacos
14.
Int J Mol Sci ; 20(4)2019 Feb 13.
Artigo em Inglês | MEDLINE | ID: mdl-30781887

RESUMO

Alkaloids attract great attention due to their valuable therapeutic properties. Stepharine, an aporphine alkaloid of Stephania glabra plants, exhibits anti-aging, anti-hypertensive, and anti-viral effects. The distribution of aporphine alkaloids in cell cultures, as well as whole plants is unknown, which hampers the development of bioengineering strategies toward enhancing their production. The spatial distribution of stepharine in cell culture models, plantlets, and mature micropropagated plants was investigated at the cellular and organ levels. Stepharine biosynthesis was found to be highly spatially and temporally regulated during plant development. We proposed that self-intoxication is the most likely reason for the failure of the induction of alkaloid biosynthesis in cell cultures. During somatic embryo development, the toxic load of alkaloids inside the cells increased. Only specialized cell sites such as vascular tissues with companion cells (VT cells), laticifers, and parenchymal cells with inclusions (PI cells) can tolerate the accumulation of alkaloids, and thus circumvent this restriction. S. glabra plants have adapted to toxic pressure by forming an additional transport secretory (laticifer) system and depository PI cells. Postembryonic growth restricts specialized cell site formation during organ development. Future bioengineering strategies should include cultures enriched in the specific cells identified in this study.


Assuntos
Alcaloides/metabolismo , Morfogênese , Stephania/crescimento & desenvolvimento , Stephania/metabolismo , Linhagem Celular , Microdissecção , Fenótipo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Stephania/citologia , Fatores de Tempo
15.
Biotechnol Appl Biochem ; 65(2): 150-155, 2018 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-28332216

RESUMO

It has previously been shown that exogenous application of p-coumaric acid (CA), a precursor of phenolic compounds, improved stilbene production in cell cultures of Vitis amurensis. This study examines the effect of cinnamic (Cin) and caffeic (Caf) acids, which are also phenolic precursors, on stilbene biosynthesis in the cell cultures. Five stilbenes, t-resveratrol diglucoside, t-piceid (t-resveratrol glucoside), t-resveratrol, t-ε-viniferin, and t-δ-viniferin, were found in the treated and untreated cells. Cin acid increased the total stilbene production in the grape cell cultures 2.3-3.5 times in comparison with that in the untreated cells. Caf acid increased the total stilbene production by 1.8- to 1.9-fold, but this increase was not considerably different from stilbene production in the untreated cells. Cin acid affected the total stilbene production via a marked increase in the content of t-resveratrol diglucoside (up to 2.2 times), t-piceid (up to three times), t-resveratrol (up to 5.1 times), t-ε-viniferin (up to eight times), and t-δ-viniferin (up to 9.2 times). Transcription levels of VaSTS5, 6, 7, 8, and 10 genes considerably increased under 0.1, 0.25, and 0.5 mM Cin acid. These results indicate that Cin acid increased stilbene production in V. amurensis calli via a selective enhancement of STS gene expression.


Assuntos
Aciltransferases/genética , Ácidos Cafeicos/metabolismo , Técnicas de Cultura de Células/métodos , Cinamatos/metabolismo , Proteínas de Plantas/genética , Estilbenos/metabolismo , Vitis/metabolismo , Aciltransferases/metabolismo , Regulação da Expressão Gênica de Plantas , Proteínas de Plantas/metabolismo , Estilbenos/análise , Vitis/química , Vitis/citologia , Vitis/genética
16.
Planta ; 245(1): 151-159, 2017 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-27686467

RESUMO

MAIN CONCLUSION: We detected and quantified six stilbenes ( cis -piceid, t -piceid, t -ε-viniferin, cis -ε-viniferin, t -resveratrol, and t -δ-viniferin) in the leaves, petioles, berry skins, and seeds of wild-growing Vitis amurensis . The highest content of stilbenes and expression of stilbene biosynthesis genes were in the probes collected in the autumn and after ultraviolet elicitation. Stilbenes, including the best-studied stilbene resveratrol, are known to display valuable bioactivities and protect plants against various pathogens. There is a lack of studies on stilbene quantities and spectrum combined with an analysis of the stilbene biosynthesis pathway gene expression in Vitaceae species, despite grapevine is an important source of stilbenes. This study presents an analysis of stilbene spectrum, stilbene content, and expression of stilbene biosynthesis genes both in natural conditions and after ultraviolet (UV-C) elicitation in the leaves, petioles, berry skins, and seeds of wild-growing Vitis amurensis, a highly stress-tolerant plant species. Using HPLC analysis, we detected six main stilbenes: cis-piceid (up to 0.257 mg/g of dry weight (DW) of plant material), t-piceid (up to 0.055 mg/g DW), t-ε-viniferin (up to 0.122 mg/g DW), cis-ε-viniferin (up to 0.031 mg/g DW), t-resveratrol (from 0.004 to 0.121 mg/g DW), and t-δ-viniferin (up to 0.019 mg/g DW). The stilbenes were actively synthesized in the leaves (total stilbenes 0.39 mg/g DW) and berry skins (total stilbenes 0.249 mg/g DW) of V. amurensis collected in the autumn. qRT-PCR revealed that the stilbene synthase (STS), resveratrol O-glucosyltransferase (Glu1), and polyphenol oxidase (PPO1) genes were actively expressed in the analyzed tissues. The resveratrol methyltransferase (Romt1) gene, which is known to catalyze biosynthesis of pterostilbene, was also expressed, but no pterostilbene has been detected in V. amurensis. The content of all detected stilbenes and expression of stilbene biosynthesis genes increased after UV-C treatment, except for Romt1. The data are important for understanding the stilbene biosynthesis in grapevine.


Assuntos
Vias Biossintéticas/genética , Regulação da Expressão Gênica de Plantas , Genes de Plantas , Estilbenos/metabolismo , Vitis/genética , Biomassa , Catecol Oxidase/genética , Catecol Oxidase/metabolismo , Cromatografia Líquida de Alta Pressão , Glucosiltransferases/metabolismo , Espectrometria de Massas , Metiltransferases/genética , Metiltransferases/metabolismo , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Vitis/enzimologia
17.
Plants (Basel) ; 13(5)2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38475448

RESUMO

Phlojodicarpus sibiricus, a valuable endangered medicinal plant, is a source of angular pyranocoumarins used in pharmacology. Due to limited resource availability, other pyranocoumarin sources are needed. In the present research, the chemical composition of a closely related species, Phlojodicarpus villosus, was studied, along with P. sibiricus. High-performance liquid chromatography and mass-spectrometric analyses, followed by antibacterial activity studies of root extracts from both species, were performed. P. sibiricus and P. villosus differed significantly in coumarin composition. Pyranocoumarins predominated in P. sibiricus, while furanocoumarins predominated in P. villosus. Osthenol, the precursor of angular pyrano- and furanocoumarins, was detected in both P. sibiricus and P. villosus. Angular forms of coumarins were detected in both species according to the mass-spectrometric behavior of the reference. Thus, P. villosus cannot be an additional source of pyranocoumarins because their content in the plant is critically low. At the same time, the plant contained large amounts of hydroxycoumarins and furanocoumarins. The extracts exhibited moderate antibacterial activity against five standard strains. The P. villosus extract additionally suppressed the growth of the Gram-negative bacterium E. coli. Thus, both Phlojodicarpus species are promising for further investigation in the field of pharmaceuticals as producers of different coumarins.

18.
Foods ; 12(18)2023 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-37761068

RESUMO

Due to their valuable meat and hepatopancreas, the world's most famous delicacies, crabs, have become target species of commercial fisheries and aquaculture. By methods of supercritical fluid and high-performance liquid chromatography, coupled with high resolution mass spectrometry, we analyzed triacylglycerols (TG) and phospholipids (PL)-glycerophosphoethanolamines (PE), glycerophosphocholines (PC), glycerophosphoserines (PS), and glycerophosphoinositols (PI)-in the hepatopancreas and muscles of the Japanese mitten crab Eriocheir japonica and the red king crab Paralithodes camtschaticus inhabiting the Sea of Japan. TGs were the main class of lipids in the crab hepatopancreas, while they were found in trace amounts in muscle. TGs of E. japonica differed from those of P. camtschaticus by a higher content of 16:0, 16:1, 18:2, and 20:4 FA and a lower content of eicosapentaenoic and docosahexaenoic acids. The Japanese mitten crab differed from the red king crab by a lower content of molecular species with eicosapentaenoic acid in PC and PI; an increased content of arachidonic acid in PE, PS, and PI; and a lower content of molecular species with docosahexaenoic acid in PE in the hepatopancreas and muscles. The high nutritional value of the crabs E. japonica and P. camtschaticus was confirmed by a high content of molecular species of lipids with n-3 polyunsaturated fatty acids. The data of the lipid molecular species profile provide new background information for future studies on biochemistry and aquaculture of crabs.

19.
Life (Basel) ; 13(2)2023 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-36836880

RESUMO

The E3 ubiquitin-protein ligase HOS1 is an important integrator of temperature information and developmental processes. HOS1 is a negative regulator of plant cold tolerance, and silencing HOS1 leads to increased cold tolerance. In the present work, we studied ROS levels in hos1Cas9Arabidopsis thaliana plants, in which the HOS1 gene was silenced by disruption of the open reading frame via CRISPR/Cas9 technology. Confocal imaging of intracellular reactive oxygen species (ROS) showed that the hos1 mutation moderately increased levels of ROS under both low and high light (HL) conditions, but wild-type (WT) and hos1Cas9 plants exhibited similar ROS levels in the dark. Visualization of single cells did not reveal differences in the intracellular distribution of ROS between WT and hos1Cas9 plants. The hos1Cas9 plants contained a high basal level of ascorbic acid, maintained a normal balance between reduced and oxidized glutathione (GSH and GSSG), and generated a strong antioxidant defense response against paraquat under HL conditions. Under cold exposure, the hos1 mutation decreased the ROS level and substantially increased the expression of the ascorbate peroxidase genes Apx1 and Apx2. When plants were pre-exposed to cold and further exposed to HL, the expression of the NADPH oxidase genes RbohD and RbohF was increased in the hos1Cas9 plants but not in WT plants. hos1-mediated changes in the level of ROS are cold-dependent and cold-independent, which implies different levels of regulation. Our data indicate that HOS1 is required to maintain ROS homeostasis not only under cold conditions, but also under conditions of both low and high light intensity. It is likely that HOS1 prevents the overinduction of defense mechanisms to balance growth.

20.
J Funct Biomater ; 14(9)2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37754865

RESUMO

This study delves into the novel utilization of Aristolochia manshuriensis cultured cells for extracellular silver nanoparticles (AgNPs) synthesis without the need for additional substances. The presence of elemental silver has been verified using energy-dispersive X-ray spectroscopy, while distinct surface plasmon resonance peaks were revealed by UV-Vis spectra. Transmission and scanning electron microscopy indicated that the AgNPs, ranging in size from 10 to 40 nm, exhibited a spherical morphology. Fourier-transform infrared analysis validated the abilty of A. manshuriensis extract components to serve as both reducing and capping agents for metal ions. In the context of cytotoxicity on embryonic fibroblast (NIH 3T3) and mouse neuroblastoma (N2A) cells, AgNPs demonstrated varying effects. Specifically, nanoparticles derived from callus cultures exhibited an IC50 of 2.8 µg/mL, effectively inhibiting N2A growth, whereas AgNPs sourced from hairy roots only achieved this only at concentrations of 50 µg/mL and above. Notably, all studied AgNPs' treatment-induced cytotoxicity in fibroblast cells, yielding IC50 values ranging from 7.2 to 36.3 µg/mL. Furthermore, the findings unveiled the efficacy of the synthesized AgNPs against pathogenic microorganisms impacting both plants and animals, including Agrobacterium rhizogenes, A. tumefaciens, Bacillus subtilis, and Escherichia coli. These findings underscore the effectiveness of biotechnological methodologies in offering advanced and enhanced green nanotechnology alternatives for generating nanoparticles with applications in combating cancer and infectious disorders.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA