Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
PLoS Genet ; 12(1): e1005779, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26760297

RESUMO

MPV17 is a mitochondrial inner membrane protein whose dysfunction causes mitochondrial DNA abnormalities and disease by an unknown mechanism. Perturbations of deoxynucleoside triphosphate (dNTP) pools are a recognized cause of mitochondrial genomic instability; therefore, we determined DNA copy number and dNTP levels in mitochondria of two models of MPV17 deficiency. In Mpv17 ablated mice, liver mitochondria showed substantial decreases in the levels of dGTP and dTTP and severe mitochondrial DNA depletion, whereas the dNTP pool was not significantly altered in kidney and brain mitochondria that had near normal levels of DNA. The shortage of mitochondrial dNTPs in Mpv17-/- liver slows the DNA replication in the organelle, as evidenced by the elevated level of replication intermediates. Quiescent fibroblasts of MPV17-mutant patients recapitulate key features of the primary affected tissue of the Mpv17-/- mice, displaying virtual absence of the protein, decreased dNTP levels and mitochondrial DNA depletion. Notably, the mitochondrial DNA loss in the patients' quiescent fibroblasts was prevented and rescued by deoxynucleoside supplementation. Thus, our study establishes dNTP insufficiency in the mitochondria as the cause of mitochondrial DNA depletion in MPV17 deficiency, and identifies deoxynucleoside supplementation as a potential therapeutic strategy for MPV17-related disease. Moreover, changes in the expression of factors involved in mitochondrial deoxynucleotide homeostasis indicate a remodeling of nucleotide metabolism in MPV17 disease models, which suggests mitochondria lacking functional MPV17 have a restricted purine mitochondrial salvage pathway.


Assuntos
Replicação do DNA/genética , DNA Mitocondrial/genética , Proteínas de Membrana/genética , Mitocôndrias Hepáticas/genética , Animais , Nucleotídeos de Desoxiguanina/genética , Feminino , Fibroblastos/metabolismo , Regulação da Expressão Gênica , Humanos , Proteínas de Membrana/deficiência , Camundongos , Mitocôndrias Hepáticas/metabolismo , Transdução de Sinais , Nucleotídeos de Timina/genética
2.
Diabetes ; 69(11): 2481-2489, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32816962

RESUMO

Loss-of-function mutations in both alleles of the human insulin receptor gene (INSR) cause extreme insulin resistance (IR) and usually death in childhood, with few effective therapeutic options. Bivalent antireceptor antibodies can elicit insulin-like signaling by mutant INSR in cultured cells, but whether this translates into meaningful metabolic benefits in vivo, wherein the dynamics of insulin signaling and receptor recycling are more complex, is unknown. To address this, we adopted a strategy to model human insulin receptoropathy in mice, using Cre recombinase delivered by adeno-associated virus to knockout endogenous hepatic Insr acutely in floxed Insr mice (liver insulin receptor knockout [L-IRKO] + GFP), before adenovirus-mediated add back of wild-type (WT) or mutant human INSR Two murine anti-INSR monoclonal antibodies, previously shown to be surrogate agonists for mutant INSR, were then tested by intraperitoneal injections. As expected, L-IRKO + GFP mice showed glucose intolerance and severe hyperinsulinemia. This was fully corrected by add back of WT but not with either D734A or S350L mutant INSR. Antibody injection improved glucose tolerance in D734A INSR-expressing mice and reduced hyperinsulinemia in both S350L and D734A INSR-expressing animals. It did not cause hypoglycemia in WT INSR-expressing mice. Antibody treatment also downregulated both WT and mutant INSR protein, attenuating its beneficial metabolic effects. Anti-INSR antibodies thus improve IR in an acute model of insulin receptoropathy, but these findings imply a narrow therapeutic window determined by competing effects of antibodies to stimulate receptors and induce their downregulation.


Assuntos
Anticorpos , Modelos Animais de Doenças , Hiperglicemia/terapia , Insulina/imunologia , Receptor de Insulina/imunologia , Receptor de Insulina/metabolismo , Animais , Glicemia , Regulação da Expressão Gênica , Fígado/metabolismo , Masculino , Camundongos , Camundongos Knockout , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , Distribuição Aleatória , Receptor de Insulina/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA