Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
Nature ; 563(7730): 230-234, 2018 11.
Artigo em Inglês | MEDLINE | ID: mdl-30374193

RESUMO

In recent years, artificial neural networks have become the flagship algorithm of artificial intelligence1. In these systems, neuron activation functions are static, and computing is achieved through standard arithmetic operations. By contrast, a prominent branch of neuroinspired computing embraces the dynamical nature of the brain and proposes to endow each component of a neural network with dynamical functionality, such as oscillations, and to rely on emergent physical phenomena, such as synchronization2-6, for solving complex problems with small networks7-11. This approach is especially interesting for hardware implementations, because emerging nanoelectronic devices can provide compact and energy-efficient nonlinear auto-oscillators that mimic the periodic spiking activity of biological neurons12-16. The dynamical couplings between oscillators can then be used to mediate the synaptic communication between the artificial neurons. One challenge for using nanodevices in this way is to achieve learning, which requires fine control and tuning of their coupled oscillations17; the dynamical features of nanodevices can be difficult to control and prone to noise and variability18. Here we show that the outstanding tunability of spintronic nano-oscillators-that is, the possibility of accurately controlling their frequency across a wide range, through electrical current and magnetic field-can be used to address this challenge. We successfully train a hardware network of four spin-torque nano-oscillators to recognize spoken vowels by tuning their frequencies according to an automatic real-time learning rule. We show that the high experimental recognition rates stem from the ability of these oscillators to synchronize. Our results demonstrate that non-trivial pattern classification tasks can be achieved with small hardware neural networks by endowing them with nonlinear dynamical features such as oscillations and synchronization.

2.
Nano Lett ; 23(17): 7869-7875, 2023 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-37589447

RESUMO

Spintronic devices have recently attracted a lot of attention in the field of unconventional computing due to their non-volatility for short- and long-term memory, nonlinear fast response, and relatively small footprint. Here we demonstrate experimentally how voltage driven magnetization dynamics of dual free layer perpendicular magnetic tunnel junctions can emulate spiking neurons in hardware. The output spiking rate was controlled by varying the dc bias voltage across the device. The field-free operation of this two-terminal device and its robustness against an externally applied magnetic field make it a suitable candidate to mimic the neuron response in a dense neural network. The small energy consumption of the device (4-16 pJ/spike) and its scalability are important benefits for embedded applications. This compact perpendicular magnetic tunnel junction structure could finally bring spiking neural networks to sub-100 nm size elements.

3.
Nature ; 547(7664): 428-431, 2017 07 26.
Artigo em Inglês | MEDLINE | ID: mdl-28748930

RESUMO

Neurons in the brain behave as nonlinear oscillators, which develop rhythmic activity and interact to process information. Taking inspiration from this behaviour to realize high-density, low-power neuromorphic computing will require very large numbers of nanoscale nonlinear oscillators. A simple estimation indicates that to fit 108 oscillators organized in a two-dimensional array inside a chip the size of a thumb, the lateral dimension of each oscillator must be smaller than one micrometre. However, nanoscale devices tend to be noisy and to lack the stability that is required to process data in a reliable way. For this reason, despite multiple theoretical proposals and several candidates, including memristive and superconducting oscillators, a proof of concept of neuromorphic computing using nanoscale oscillators has yet to be demonstrated. Here we show experimentally that a nanoscale spintronic oscillator (a magnetic tunnel junction) can be used to achieve spoken-digit recognition with an accuracy similar to that of state-of-the-art neural networks. We also determine the regime of magnetization dynamics that leads to the greatest performance. These results, combined with the ability of the spintronic oscillators to interact with each other, and their long lifetime and low energy consumption, open up a path to fast, parallel, on-chip computation based on networks of oscillators.

4.
Phys Rev Lett ; 126(2): 027602, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33512197

RESUMO

Materials possessing multiple states are promising to emulate synaptic and neuronic behaviors. Their operation frequency, typically in or below the GHz range, however, limits the speed of neuromorphic computing. Ultrafast THz electric field excitation has been employed to induce nonequilibrium states of matter, called hidden phases in oxides. One may wonder if there are systems for which THz pulses can generate neuronic and synaptic behavior, via the creation of hidden phases. Using atomistic simulations, we discover that relaxor ferroelectrics can emulate all the key neuronic and memristive synaptic features. Their occurrence originates from the activation of many hidden phases of polarization order, resulting from the response of nanoregions to THz pulses. Such phases further possess different dielectric constants, which is also promising for memcapacitor devices.

5.
Phys Rev Lett ; 118(24): 247202, 2017 Jun 16.
Artigo em Inglês | MEDLINE | ID: mdl-28665656

RESUMO

Phase coupling between auto-oscillators is central for achieving coherent responses such as synchronization. Here we present an experimental approach to probe it in the case of two dipolarly coupled spin-torque vortex nano-oscillators using an external microwave field. By phase locking one oscillator to the external source, we observe frequency pulling on the second oscillator. From coupled phase equations we show analytically that this frequency pulling results from concerted actions of oscillator-oscillator and source-oscillator couplings. The analysis allows us to determine the strength and phase shift of coupling between two oscillators, yielding important information for the implementation of large interacting oscillator networks.

6.
Proc IEEE Inst Electr Electron Eng ; 104(10): 2024-2039, 2016 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-27881881

RESUMO

Bioinspired hardware holds the promise of low-energy, intelligent, and highly adaptable computing systems. Applications span from automatic classification for big data management, through unmanned vehicle control, to control for biomedical prosthesis. However, one of the major challenges of fabricating bioinspired hardware is building ultra-high-density networks out of complex processing units interlinked by tunable connections. Nanometer-scale devices exploiting spin electronics (or spintronics) can be a key technology in this context. In particular, magnetic tunnel junctions (MTJs) are well suited for this purpose because of their multiple tunable functionalities. One such functionality, non-volatile memory, can provide massive embedded memory in unconventional circuits, thus escaping the von-Neumann bottleneck arising when memory and processors are located separately. Other features of spintronic devices that could be beneficial for bioinspired computing include tunable fast nonlinear dynamics, controlled stochasticity, and the ability of single devices to change functions in different operating conditions. Large networks of interacting spintronic nanodevices can have their interactions tuned to induce complex dynamics such as synchronization, chaos, soliton diffusion, phase transitions, criticality, and convergence to multiple metastable states. A number of groups have recently proposed bioinspired architectures that include one or several types of spintronic nanodevices. In this paper, we show how spintronics can be used for bioinspired computing. We review the different approaches that have been proposed, the recent advances in this direction, and the challenges toward fully integrated spintronics complementary metal-oxide-semiconductor (CMOS) bioinspired hardware.

7.
Nat Commun ; 15(1): 3671, 2024 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-38693108

RESUMO

Ising machines, which are hardware implementations of the Ising model of coupled spins, have been influential in the development of unsupervised learning algorithms at the origins of Artificial Intelligence (AI). However, their application to AI has been limited due to the complexities in matching supervised training methods with Ising machine physics, even though these methods are essential for achieving high accuracy. In this study, we demonstrate an efficient approach to train Ising machines in a supervised way through the Equilibrium Propagation algorithm, achieving comparable results to software-based implementations. We employ the quantum annealing procedure of the D-Wave Ising machine to train a fully-connected neural network on the MNIST dataset. Furthermore, we demonstrate that the machine's connectivity supports convolution operations, enabling the training of a compact convolutional network with minimal spins per neuron. Our findings establish Ising machines as a promising trainable hardware platform for AI, with the potential to enhance machine learning applications.

8.
Nat Mater ; 11(10): 860-4, 2012 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-22983431

RESUMO

Memristors are continuously tunable resistors that emulate biological synapses. Conceptualized in the 1970s, they traditionally operate by voltage-induced displacements of matter, although the details of the mechanism remain under debate. Purely electronic memristors based on well-established physical phenomena with albeit modest resistance changes have also emerged. Here we demonstrate that voltage-controlled domain configurations in ferroelectric tunnel barriers yield memristive behaviour with resistance variations exceeding two orders of magnitude and a 10 ns operation speed. Using models of ferroelectric-domain nucleation and growth, we explain the quasi-continuous resistance variations and derive a simple analytical expression for the memristive effect. Our results suggest new opportunities for ferroelectrics as the hardware basis of future neuromorphic computational architectures.

9.
Nat Nanotechnol ; 18(11): 1273-1280, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37500772

RESUMO

Spintronic nano-synapses and nano-neurons perform neural network operations with high accuracy thanks to their rich, reproducible and controllable magnetization dynamics. These dynamical nanodevices could transform artificial intelligence hardware, provided they implement state-of-the-art deep neural networks. However, there is today no scalable way to connect them in multilayers. Here we show that the flagship nano-components of spintronics, magnetic tunnel junctions, can be connected into multilayer neural networks where they implement both synapses and neurons thanks to their magnetization dynamics, and communicate by processing, transmitting and receiving radiofrequency signals. We build a hardware spintronic neural network composed of nine magnetic tunnel junctions connected in two layers, and show that it natively classifies nonlinearly separable radiofrequency inputs with an accuracy of 97.7%. Using physical simulations, we demonstrate that a large network of nanoscale junctions can achieve state-of-the-art identification of drones from their radiofrequency transmissions, without digitization and consuming only a few milliwatts, which constitutes a gain of several orders of magnitude in power consumption compared to currently used techniques. This study lays the foundation for deep, dynamical, spintronic neural networks.

10.
Nat Commun ; 13(1): 1016, 2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35197449

RESUMO

Deep learning has an increasing impact to assist research, allowing, for example, the discovery of novel materials. Until now, however, these artificial intelligence techniques have fallen short of discovering the full differential equation of an experimental physical system. Here we show that a dynamical neural network, trained on a minimal amount of data, can predict the behavior of spintronic devices with high accuracy and an extremely efficient simulation time, compared to the micromagnetic simulations that are usually employed to model them. For this purpose, we re-frame the formalism of Neural Ordinary Differential Equations to the constraints of spintronics: few measured outputs, multiple inputs and internal parameters. We demonstrate with Neural Ordinary Differential Equations an acceleration factor over 200 compared to micromagnetic simulations for a complex problem - the simulation of a reservoir computer made of magnetic skyrmions (20 minutes compared to three days). In a second realization, we show that we can predict the noisy response of experimental spintronic nano-oscillators to varying inputs after training Neural Ordinary Differential Equations on five milliseconds of their measured response to a different set of inputs. Neural Ordinary Differential Equations can therefore constitute a disruptive tool for developing spintronic applications in complement to micromagnetic simulations, which are time-consuming and cannot fit experiments when noise or imperfections are present. Our approach can also be generalized to other electronic devices involving dynamics.

11.
Nat Commun ; 13(1): 883, 2022 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-35169115

RESUMO

The brain naturally binds events from different sources in unique concepts. It is hypothesized that this process occurs through the transient mutual synchronization of neurons located in different regions of the brain when the stimulus is presented. This mechanism of 'binding through synchronization' can be directly implemented in neural networks composed of coupled oscillators. To do so, the oscillators must be able to mutually synchronize for the range of inputs corresponding to a single class, and otherwise remain desynchronized. Here we show that the outstanding ability of spintronic nano-oscillators to mutually synchronize and the possibility to precisely control the occurrence of mutual synchronization by tuning the oscillator frequencies over wide ranges allows pattern recognition. We demonstrate experimentally on a simple task that three spintronic nano-oscillators can bind consecutive events and thus recognize and distinguish temporal sequences. This work is a step forward in the construction of neural networks that exploit the non-linear dynamic properties of their components to perform brain-inspired computations.


Assuntos
Encéfalo/fisiologia , Sincronização Cortical/fisiologia , Rede Nervosa/fisiologia , Redes Neurais de Computação , Animais , Simulação por Computador , Humanos , Modelos Neurológicos , Neurônios/fisiologia
12.
iScience ; 24(3): 102222, 2021 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-33748709

RESUMO

Finding spike-based learning algorithms that can be implemented within the local constraints of neuromorphic systems, while achieving high accuracy, remains a formidable challenge. Equilibrium propagation is a promising alternative to backpropagation as it only involves local computations, but hardware-oriented studies have so far focused on rate-based networks. In this work, we develop a spiking neural network algorithm called EqSpike, compatible with neuromorphic systems, which learns by equilibrium propagation. Through simulations, we obtain a test recognition accuracy of 97.6% on the MNIST handwritten digits dataset (Mixed National Institute of Standards and Technology), similar to rate-based equilibrium propagation, and comparing favorably to alternative learning techniques for spiking neural networks. We show that EqSpike implemented in silicon neuromorphic technology could reduce the energy consumption of inference and training, respectively, by three orders and two orders of magnitude compared to graphics processing units. Finally, we also show that during learning, EqSpike weight updates exhibit a form of spike-timing-dependent plasticity, highlighting a possible connection with biology.

13.
Front Neurosci ; 15: 633674, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33679315

RESUMO

Equilibrium Propagation is a biologically-inspired algorithm that trains convergent recurrent neural networks with a local learning rule. This approach constitutes a major lead to allow learning-capable neuromophic systems and comes with strong theoretical guarantees. Equilibrium propagation operates in two phases, during which the network is let to evolve freely and then "nudged" toward a target; the weights of the network are then updated based solely on the states of the neurons that they connect. The weight updates of Equilibrium Propagation have been shown mathematically to approach those provided by Backpropagation Through Time (BPTT), the mainstream approach to train recurrent neural networks, when nudging is performed with infinitely small strength. In practice, however, the standard implementation of Equilibrium Propagation does not scale to visual tasks harder than MNIST. In this work, we show that a bias in the gradient estimate of equilibrium propagation, inherent in the use of finite nudging, is responsible for this phenomenon and that canceling it allows training deep convolutional neural networks. We show that this bias can be greatly reduced by using symmetric nudging (a positive nudging and a negative one). We also generalize Equilibrium Propagation to the case of cross-entropy loss (by opposition to squared error). As a result of these advances, we are able to achieve a test error of 11.7% on CIFAR-10, which approaches the one achieved by BPTT and provides a major improvement with respect to the standard Equilibrium Propagation that gives 86% test error. We also apply these techniques to train an architecture with unidirectional forward and backward connections, yielding a 13.2% test error. These results highlight equilibrium propagation as a compelling biologically-plausible approach to compute error gradients in deep neuromorphic systems.

14.
Sci Rep ; 11(1): 15082, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34301961

RESUMO

In a spintronic resonator a radio-frequency signal excites spin dynamics that can be detected by the spin-diode effect. Such resonators are generally based on ferromagnetic metals and their responses to spin torques. New and richer functionalities can potentially be achieved with quantum materials, specifically with transition metal oxides that have phase transitions that can endow a spintronic resonator with hysteresis and memory. Here we present the spin torque ferromagnetic resonance characteristics of a hybrid metal-insulator-transition oxide/ ferromagnetic metal nanoconstriction. Our samples incorporate [Formula: see text], with Ni, Permalloy ([Formula: see text]) and Pt layers patterned into a nanoconstriction geometry. The first order phase transition in [Formula: see text] is shown to lead to systematic changes in the resonance response and hysteretic current control of the ferromagnetic resonance frequency. Further, the output signal can be systematically varied by locally changing the state of the [Formula: see text] with a dc current. These results demonstrate new spintronic resonator functionalities of interest for neuromorphic computing.

15.
Adv Mater ; 33(17): e2008135, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33738866

RESUMO

Metamaterials present the possibility of artificially generating advanced functionalities through engineering of their internal structure. Artificial spin networks, in which a large number of nanoscale magnetic elements are coupled together, are promising metamaterial candidates that enable the control of collective magnetic behavior through tuning of the local interaction between elements. In this work, the motion of magnetic domain-walls in an artificial spin network leads to a tunable stochastic response of the metamaterial, which can be tailored through an external magnetic field and local lattice modifications. This type of tunable stochastic network produces a controllable random response exploiting intrinsic stochasticity within magnetic domain-wall motion at the nanoscale. An iconic demonstration used to illustrate the control of randomness is the Galton board. In this system, multiple balls fall into an array of pegs to generate a bell-shaped curve that can be modified via the array spacing or the tilt of the board. A nanoscale recreation of this experiment using an artificial spin network is employed to demonstrate tunable stochasticity. This type of tunable stochastic network opens new paths toward post-Von Neumann computing architectures such as Bayesian sensing or random neural networks, in which stochasticity is harnessed to efficiently perform complex computational tasks.

16.
Sci Rep ; 10(1): 13116, 2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32753722

RESUMO

The correlation of phase fluctuations in any type of oscillator fundamentally defines its spectral shape. However, in nonlinear oscillators, such as spin torque nano-oscillators, the frequency spectrum can become particularly complex. This is specifically true when not only considering thermal but also colored 1/f flicker noise processes, which are crucial in the context of the oscillator's long term stability. In this study, we address the frequency spectrum of spin torque oscillators in the regime of large-amplitude steady oscillations experimentally and as well theoretically. We particularly take both thermal and flicker noise into account. We perform a series of measurements of the phase noise and the spectrum on spin torque vortex oscillators, notably varying the measurement time duration. Furthermore, we develop the modelling of thermal and flicker noise in Thiele equation based simulations. We also derive the complete phase variance in the framework of the nonlinear auto-oscillator theory and deduce the actual frequency spectrum. We investigate its dependence on the measurement time duration and compare with the experimental results. Long term stability is important in several of the recent applicative developments of spin torque oscillators. This study brings some insights on how to better address this issue.

17.
Sci Rep ; 10(1): 328, 2020 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-31941917

RESUMO

The reservoir computing neural network architecture is widely used to test hardware systems for neuromorphic computing. One of the preferred tasks for bench-marking such devices is automatic speech recognition. This task requires acoustic transformations from sound waveforms with varying amplitudes to frequency domain maps that can be seen as feature extraction techniques. Depending on the conversion method, these transformations sometimes obscure the contribution of the neuromorphic hardware to the overall speech recognition performance. Here, we quantify and separate the contributions of the acoustic transformations and the neuromorphic hardware to the speech recognition success rate. We show that the non-linearity in the acoustic transformation plays a critical role in feature extraction. We compute the gain in word success rate provided by a reservoir computing device compared to the acoustic transformation only, and show that it is an appropriate bench-mark for comparing different hardware. Finally, we experimentally and numerically quantify the impact of the different acoustic transformations for neuromorphic hardware based on magnetic nano-oscillators.

18.
Sci Rep ; 9(1): 1851, 2019 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-30755662

RESUMO

One of the biggest stakes in nanoelectronics today is to meet the needs of Artificial Intelligence by designing hardware neural networks which, by fusing computation and memory, process and learn from data with limited energy. For this purpose, memristive devices are excellent candidates to emulate synapses. A challenge, however, is to map existing learning algorithms onto a chip: for a physical implementation, a learning rule should ideally be tolerant to the typical intrinsic imperfections of such memristive devices, and local. Restricted Boltzmann Machines (RBM), for their local learning rule and inherent tolerance to stochasticity, comply with both of these constraints and constitute a highly attractive algorithm towards achieving memristor-based Deep Learning. On simulation grounds, this work gives insights into designing simple memristive devices programming protocols to train on chip Boltzmann Machines. Among other RBM-based neural networks, we advocate using a Discriminative RBM, with two hardware-oriented adaptations. We propose a pulse width selection scheme based on the sign of two successive weight updates, and show that it removes the constraint to precisely tune the initial programming pulse width as a hyperparameter. We also propose to evaluate the weight update requested by the algorithm across several samples and stochastic realizations. We show that this strategy brings a partial immunity against the most severe memristive device imperfections such as the non-linearity and the stochasticity of the conductance updates, as well as device-to-device variability.

20.
Sci Rep ; 8(1): 13475, 2018 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-30194358

RESUMO

Synchronized nonlinear oscillators networks are at the core of numerous families of applications including phased array wave generators and neuromorphic pattern matching systems. In these devices, stable synchronization between large numbers of nanoscale oscillators is a key issue that remains to be demonstrated. Here, we show experimentally that synchronized spin-torque oscillator networks can be scaled up. By increasing the number of synchronized oscillators up to eight, we obtain that the emitted power and the quality factor increase linearly with the number of oscillators. Even more importantly, we demonstrate that the stability of synchronization in time exceeds 1.6 milliseconds corresponding to 105 periods of oscillation. Our study demonstrates that spin-torque oscillators are suitable for applications based on synchronized networks of oscillators.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA