Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Antonie Van Leeuwenhoek ; 111(4): 533-550, 2018 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-29110156

RESUMO

As the depth increases and the light fades in oceanic cold seeps, a variety of chemosynthetic-based benthic communities arise. Previous assessments reported polychaete annelids belonging to the family Siboglinidae as part of the fauna at cold seeps, with the 'Vestimentifera' clade containing specialists that depend on microbial chemosynthetic endosymbionts for nutrition. Little information exists concerning the microbiota of the external portion of the vestimentiferan trunk wall. We employed 16S rDNA-based metabarcoding to describe the external microbiota of the chitin tubes from the vestimentiferan Escarpia collected from a chemosynthetic community in a cold seep area at the southwestern Atlantic Ocean. The most abundant operational taxonomic unit (OTU) belonged to the family Pirellulaceae (phylum Planctomycetes), and the second most abundant OTU belonged to the order Methylococcales (phylum Proteobacteria), composing an average of 21.1 and 15.4% of the total reads on tubes, respectively. These frequencies contrasted with those from the surrounding environment (sediment and water), where they represent no more than 0.1% of the total reads each. Moreover, some taxa with lower abundances were detected only in Escarpia tube walls. These data constitute on the first report of an epibiont microbial community found in close association with external surface of a cold-seep metazoan, Escarpia sp., from a chemosynthetic community in the southwestern Atlantic Ocean.


Assuntos
Bactérias/classificação , Biodiversidade , Sedimentos Geológicos/microbiologia , Microbiota/fisiologia , Poliquetos/microbiologia , Água do Mar/microbiologia , Animais , Oceano Atlântico , Crescimento Quimioautotrófico , Código de Barras de DNA Taxonômico , Ecossistema , Metagenoma/genética , Planctomycetales , Poliquetos/ultraestrutura , RNA Ribossômico 16S/genética
2.
Molecules ; 22(4)2017 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-28422054

RESUMO

Strategies for the control of sulfate-reducing bacteria (SRB) in the oil industry involve the use of high concentrations of biocides, but these may induce bacterial resistance and/or be harmful to public health and the environment. Essential oils (EO) produced by plants inhibit the growth of different microorganisms and are a possible alternative for controlling SRB. We aimed to characterize the bacterial community of produced water obtained from a Brazilian petroleum facility using molecular methods, as well as to evaluate the antimicrobial activity of EO from different plants and their major components against Desulfovibrio alaskensis NCIMB 13491 and against SRB growth directly in the produced water. Denaturing gradient gel electrophoresis revealed the presence of the genera Pelobacter and Marinobacterium, Geotoga petraea, and the SRB Desulfoplanes formicivorans in our produced water samples. Sequencing of dsrA insert-containing clones confirmed the presence of sequences related to D. formicivorans. EO obtained from Citrus aurantifolia, Lippia alba LA44 and Cymbopogon citratus, as well as citral, linalool, eugenol and geraniol, greatly inhibited (minimum inhibitory concentration (MIC) = 78 µg/mL) the growth of D. alaskensis in a liquid medium. The same MIC was obtained directly in the produced water with EO from L. alba LA44 (containing 82% citral) and with pure citral. These findings may help to control detrimental bacteria in the oil industry.


Assuntos
Antibacterianos/farmacologia , Bactérias/efeitos dos fármacos , Bactérias/metabolismo , Indústria de Petróleo e Gás , Óleos Voláteis/farmacologia , Sulfatos/metabolismo , Água , Bactérias/genética , Testes de Sensibilidade Microbiana
3.
PeerJ ; 11: e14642, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36655046

RESUMO

The objective of the current systematic review was to evaluate the taxonomic composition and relative abundance of bacteria and archaea associated with the microbiologically influenced corrosion (MIC), and the prediction of their metabolic functions in different sample types from oil production and transport structures worldwide. To accomplish this goal, a total of 552 published studies on the diversity of microbial communities using 16S amplicon metagenomics in oil and gas industry facilities indexed in Scopus, Web of Science, PubMed and OnePetro databases were analyzed on 10th May 2021. The selection of articles was performed following the Preferred Reporting Items for Systematic Reviews and Meta-Analyses (PRISMA) guidelines. Only studies that performed amplicon metagenomics to obtain the microbial composition of samples from oil fields were included. Studies that evaluated oil refineries, carried out amplicon metagenomics directly from cultures, and those that used DGGE analysis were removed. Data were thoroughly investigated using multivariate statistics by ordination analysis, bivariate statistics by correlation, and microorganisms' shareability and uniqueness analysis. Additionally, the full deposited databases of 16S rDNA sequences were obtained to perform functional prediction. A total of 69 eligible articles was included for data analysis. The results showed that the sulfidogenic, methanogenic, acid-producing, and nitrate-reducing functional groups were the most expressive, all of which can be directly involved in MIC processes. There were significant positive correlations between microorganisms in the injection water (IW), produced water (PW), and solid deposits (SD) samples, and negative correlations in the PW and SD samples. Only the PW and SD samples displayed genera common to all petroliferous regions, Desulfotomaculum and Thermovirga (PW), and Marinobacter (SD). There was an inferred high microbial activity in the oil fields, with the highest abundances of (i) cofactor, (ii) carrier, and (iii) vitamin biosynthesis, associated with survival metabolism. Additionally, there was the presence of secondary metabolic pathways and defense mechanisms in extreme conditions. Competitive or inhibitory relationships and metabolic patterns were influenced by the physicochemical characteristics of the environments (mainly sulfate concentration) and by human interference (application of biocides and nutrients). Our worldwide baseline study of microbial communities associated with environments of the oil and gas industry will greatly facilitate the establishment of standardized approaches to control MIC.


Assuntos
Archaea , Metagenômica , Humanos , Corrosão , Metagenômica/métodos , Archaea/genética , Bactérias/genética , Água/metabolismo
4.
Microorganisms ; 11(4)2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37110269

RESUMO

Microbiologically influenced corrosion (MIC) or biocorrosion is a complex biological and physicochemical process, Strategies for monitoring MIC are frequently based on microbial cultivation methods, while microbiological molecular methods (MMM) are not well-established in the oil industry in Brazil. Thus, there is a high demand for the development of effective protocols for monitoring biocorrosion with MMM. The main aim of our study was to analyze the physico-chemi- cal features of microbial communities occurring in produced water (PW) and in enrichment cultures in oil pipelines of the petroleum industry. In order to obtain strictly comparable results, the same samples were used for both culturing and metabarcoding. PW samples displayed higher phylogenetic diversity of bacteria and archaea whereas PW enrichments cultures showed higher dominance of bacterial MIC-associated genera. All samples had a core community composed of 19 distinct genera, with MIC-associated Desulfovibrio as the dominant genus. We observed significant associations between the PW and cultured PW samples, with a greater number of associations found between the cultured sulfate-reducing bacteria (SRB) samples and the uncultured PW samples. When evaluating the correlation between the physicochemical characteristics of the environment and the microbiota of the uncultivated samples, we suggest that the occurrence of anaerobic digestion metabolism can be characterized by well-defined phases. Therefore, the detection of microorganisms in uncultured PW by metabarcoding, along with physi-cochemical characterization, can be a more efficient method compared to the culturing method, as it is a less laborious and cost-effective method for monitoring MIC microbial agents in oil industry facilities.

5.
Electron. j. biotechnol ; 16(6): 9-9, Nov. 2013. ilus, tab
Artigo em Inglês | LILACS | ID: lil-696550

RESUMO

Background: The production of ethanol by a Consolidated Bioprocessing (CBP) strategy, which simultaneously combines cellulase production, lignocellulosic biomass hydrolysis and fermentation of released sugars to ethanol in one bioreactor, is a promising technology for cost reduction in the biological processing of biomass, specially using agroindustrial residues. Clostridium thermocellum is an anaerobic, thermophilic, strictly fermentative gram positive bacterium that meets all the requirements for CBP. Results: Ethanol concentration obtained in the non-stirred fermentation process in flasks with raw bagasse was two times greater than that in the stirred system. The results observed using a pretreated sugarcane bagasse in non-stirred flasks regarding ethanol concentration, were slightly lower than with raw bagasse. The sparging of exogenous H2 into the medium at atmospheric pressure inside the bioreactor showed to be unfavourable to achieve higher ethanol yields. Conclusions: The strain investigated is a promising candidate for thermophilic fermentative ethanol production from dried ground raw sugarcane bagasse in a CBP strategy, although the alcohol concentrations need to be further improved. In future studies, it is recommended to investigate different modes of operation of the fermentation process, including pressurized conditions, as well as to use wet raw sugarcane bagasse aiming to achieve additional improvement in ethanol production and to reduce the costs of the process.


Assuntos
Saccharum/metabolismo , Etanol/metabolismo , Reatores Biológicos , Clostridium thermocellum , Fermentação , Hidrogênio
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA