Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 52
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
PLoS Genet ; 20(5): e1011295, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38820540

RESUMO

Bacterial symbionts, with their shorter generation times and capacity for horizontal gene transfer (HGT), play a critical role in allowing marine organisms to cope with environmental change. The closure of the Isthmus of Panama created distinct environmental conditions in the Tropical Eastern Pacific (TEP) and Caribbean, offering a "natural experiment" for studying how closely related animals evolve and adapt under environmental change. However, the role of bacterial symbionts in this process is often overlooked. We sequenced the genomes of endosymbiotic bacteria in two sets of sister species of chemosymbiotic bivalves from the genera Codakia and Ctena (family Lucinidae) collected on either side of the Isthmus, to investigate how differing environmental conditions have influenced the selection of symbionts and their metabolic capabilities. The lucinid sister species hosted different Candidatus Thiodiazotropha symbionts and only those from the Caribbean had the genetic potential for nitrogen fixation, while those from the TEP did not. Interestingly, this nitrogen-fixing ability did not correspond to symbiont phylogeny, suggesting convergent evolution of nitrogen fixation potential under nutrient-poor conditions. Reconstructing the evolutionary history of the nifHDKT operon by including other lucinid symbiont genomes from around the world further revealed that the last common ancestor (LCA) of Ca. Thiodiazotropha lacked nif genes, and populations in oligotrophic habitats later re-acquired the nif operon through HGT from the Sedimenticola symbiont lineage. Our study suggests that HGT of the nif operon has facilitated niche diversification of the globally distributed Ca. Thiodiazotropha endolucinida species clade. It highlights the importance of nitrogen availability in driving the ecological diversification of chemosynthetic symbiont species and the role that bacterial symbionts may play in the adaptation of marine organisms to changing environmental conditions.


Assuntos
Bivalves , Transferência Genética Horizontal , Fixação de Nitrogênio , Nitrogênio , Filogenia , Simbiose , Simbiose/genética , Animais , Fixação de Nitrogênio/genética , Nitrogênio/metabolismo , Bivalves/microbiologia , Bivalves/genética , Bactérias/genética , Bactérias/classificação , Bactérias/metabolismo , Adaptação Fisiológica/genética , Genoma Bacteriano , Região do Caribe , Panamá
2.
Proc Natl Acad Sci U S A ; 118(29)2021 07 20.
Artigo em Inglês | MEDLINE | ID: mdl-34272286

RESUMO

In the ocean, most hosts acquire their symbionts from the environment. Due to the immense spatial scales involved, our understanding of the biogeography of hosts and symbionts in marine systems is patchy, although this knowledge is essential for understanding fundamental aspects of symbiosis such as host-symbiont specificity and evolution. Lucinidae is the most species-rich and widely distributed family of marine bivalves hosting autotrophic bacterial endosymbionts. Previous molecular surveys identified location-specific symbiont types that "promiscuously" form associations with multiple divergent cooccurring host species. This flexibility of host-microbe pairings is thought to underpin their global success, as it allows hosts to form associations with locally adapted symbionts. We used metagenomics to investigate the biodiversity, functional variability, and genetic exchange among the endosymbionts of 12 lucinid host species from across the globe. We report a cosmopolitan symbiont species, Candidatus Thiodiazotropha taylori, associated with multiple lucinid host species. Ca. T. taylori has achieved more success at dispersal and establishing symbioses with lucinids than any other symbiont described thus far. This discovery challenges our understanding of symbiont dispersal and location-specific colonization and suggests both symbiont and host flexibility underpin the ecological and evolutionary success of the lucinid symbiosis.


Assuntos
Bivalves/microbiologia , Gammaproteobacteria/classificação , Gammaproteobacteria/fisiologia , Simbiose , Animais , Processos Autotróficos , Biodiversidade , Evolução Biológica , Bivalves/classificação , Bivalves/fisiologia , Gammaproteobacteria/genética , Gammaproteobacteria/isolamento & purificação , Especificidade de Hospedeiro , Filogenia , Filogeografia
3.
Can J Microbiol ; : 1-14, 2021 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-34461021

RESUMO

A large (47.75 ± 3.56 µm in diameter) Thiovulum bacterial strain forming white veils is described from a marine mangrove ecosystem. High sulfide concentrations (up to 8 mM of H2S) were measured on sunken organic matter (wood/bone debris) under laboratory conditions. This sulfur-oxidizing bacterium colonized the organic matter, forming a white veil. According to conventional scanning electron microscope (SEM) observations, bacterial cells are ovoid and slightly motile by numerous small flagella present on the cell surface. Large intracytoplasmic internal sulfur granules were observed, suggesting a sulfidic-based metabolism. Observations were confirmed by elemental sulfur distribution detected by energy-dispersive X-ray spectroscopy (EDXS) analysis using an environmental scanning electron microscope (ESEM) on non-dehydrated samples. Phylogenetic analysis of the partial sequence of 16S rDNA obtained from purified fractions of this Epsilonproteobacteraeota strain indicates that this bacterium belongs to the Thiovulaceae cluster and could be one of the largest Thiovulum ever described. We propose to name this species Candidatus Thiovulum sp. strain imperiosus.

4.
Mar Drugs ; 18(1)2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31878034

RESUMO

Benthic cyanobacteria strains from Guadeloupe have been investigated for the first time by combining phylogenetic, chemical and biological studies in order to better understand the taxonomic and chemical diversity as well as the biological activities of these cyanobacteria through the effect of their specialized metabolites. Therefore, in addition to the construction of the phylogenetic tree, indicating the presence of 12 potentially new species, an LC-MS/MS data analysis workflow was applied to provide an overview on chemical diversity of 20 cyanobacterial extracts, which was linked to antimicrobial activities evaluation against human pathogenic and ichtyopathogenic environmental strains.


Assuntos
Produtos Biológicos/farmacologia , Cianobactérias/química , Cianobactérias/genética , Bactérias Gram-Negativas/efeitos dos fármacos , Filogenia , Antibacterianos , Anti-Infecciosos , Guadalupe , Áreas Alagadas
5.
Biometals ; 31(4): 627-637, 2018 08.
Artigo em Inglês | MEDLINE | ID: mdl-29767397

RESUMO

Crypt cells-one of the three cell types composing Strombidae digestive tubules-are characterized by the presence of numerous metal-containing phosphate granules termed spherocrystals. We explored the bioaccumulation and detoxification of metals in Strombidae by exposing wild fighting conch Strombus pugilis for 9 days to waterborne CuSO4 and ZnSO4. The total amount of Cu and Zn was determined in the digestive gland and in the rest of the body by Inductively Coupled Plasma (ICP) analyses. The digestive gland spherocrystal metal content was investigated based on the semi-quantitative energy dispersive X-ray (EDX) elemental analysis. ICP analyses of unexposed individuals revealed that 87.0 ± 5.9% of the Zn is contained in the digestive gland, where its concentration is 36 times higher than in the rest of the body. Regarding Cu, 25.8 ± 16.4% of the metal was located in the digestive gland of the control individuals, increasing to 61.5 ± 16.4% in exposed individuals. Both Cu and Zn concentrations in the digestive gland increased after exposures, pointing to a potential role of this organ in the detoxification of these metals. EDX analysis of spherocrystals revealed the presence of Ca, Cl, Fe, K, Mg, P, and Zn in unexposed individuals. No difference was found in the relative proportion of Zn in spherocrystals of exposed versus control individuals. Contrastingly, copper was never detected in the spherocrystals from controls and Zn-exposed individuals, but the relative proportion of Cu in spherocrystals of Cu-exposed individuals varied from 0.3 to 5.7%. Our results show the direct role of spherocrystals in Cu detoxification.


Assuntos
Cobre/metabolismo , Cobre/toxicidade , Gastrópodes/efeitos dos fármacos , Zinco/metabolismo , Zinco/toxicidade , Animais , Gastrópodes/metabolismo , Inativação Metabólica
6.
J Nat Prod ; 80(5): 1693-1696, 2017 05 26.
Artigo em Inglês | MEDLINE | ID: mdl-28421754

RESUMO

A novel spiro-indolofuranone fused to a thiazine skeleton, orbicularisine (1), was isolated from gills of the mollusk Codakia orbicularis. The isolation and structure elucidation using spectroscopic evidence including mass and NMR spectroscopy are described. The final structure of 1 was supported by key HMBC correlation.


Assuntos
Bivalves/química , Brânquias/química , Indolizinas/isolamento & purificação , Compostos de Espiro/isolamento & purificação , Animais , Indolizinas/química , Indolizinas/metabolismo , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Compostos de Espiro/química , Compostos de Espiro/metabolismo
7.
Microorganisms ; 12(4)2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38674597

RESUMO

Aratus pisonii and Minuca rapax are two brachyuran crabs living with bacterial ectosymbionts located on gill lamellae. One previous study has shown that several rod-shaped bacterial morphotypes are present and the community is dominated by Alphaproteobacteria and Bacteroidota. This study aims to identify the mode of transmission of the symbionts to the new host generations and to identify the bacterial community colonizing the gills of juveniles. We tested for the presence of bacteria using PCR with universal primers targeting the 16S rRNA encoding gene from gonads, eggs, and different larval stages either obtained in laboratory conditions or from the field. The presence of bacteria on juvenile gills was also characterized by scanning electron microscopy, and subsequently identified by metabarcoding analysis. Gonads, eggs, and larvae were negative to PCR tests, suggesting that bacteria are not present at these stages in significant densities. On the other hand, juveniles of both species display three rod-shaped bacterial morphotypes on gill lamellae, and sequencing revealed that the community is dominated by Bacteroidota and Alphaproteobacteria on A. pisonii juveniles, and by Alphaprotobacteria, Bacteroidota, and Acidimicrobia on M. rapax juveniles. Despite the fact that juveniles of both species co-occur in the same biotope, no shared bacterial phylotype was identified. However, some of the most abundant bacteria present in adults are also present in juveniles of the same species, suggesting that juvenile-associated communities resemble those of adults. Because some of these bacteria were also found in crab burrow water, we hypothesize that the bacterial community is established gradually during the life of the crab starting from the megalopa stage and involves epibiosis-competent bacteria that occur in the environment.

8.
FEMS Microbes ; 5: xtad024, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38213393

RESUMO

Biofilm-forming cyanobacteria are abundant in mangrove ecosystems, colonizing various niches including sediment surface and periphyton where they can cover large areas, yet have received limited attention. Several filamentous isolates were recently isolated from Guadeloupe, illustrating the diversity and novelty present in these biofilms. In this study, nine strains belonging to three novel lineages found abundantly in Guadeloupe biofilms are characterized by genome sequencing, morphological and ultrastructural examination, metabolome fingerprinting and searched for secondary metabolites biosynthesis pathways. Assignation of two lineages to known genera is confirmed, namely Scytonema and Jaaginema. The third lineage corresponds to a new Coleofasciculales genus herein described as Karukerafilum gen. nov. The four strains belonging to this genus group into two subclades, one of which displays genes necessary for nitrogen fixation as well as the complete pathway for geosmin production. This study gives new insights into the diversity of mangrove biofilm-forming cyanobacteria, including genome-based description of a new genus and the first genome sequence available for the genus Jaaginema.

9.
J Environ Qual ; 52(4): 886-896, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36758236

RESUMO

Mangrove sediments are known to be potentially active reducing zones for nitrogen removal. The goal of this work was to investigate the potential for nitrate reduction in marine mangrove sediments along a canal impacted by anthropogenic activity (Guadeloupe, Lesser Antilles). To this end, the effect of nitrate concentration, organic carbon load, and hydraulic retention time was assessed as factors affecting these nitrate reduction rates. Nitrate reduction potential was determined using flow-through reactors in marine mangrove sediments collected along "The Canal des Rotours" in Guadeloupe. Potential nitrate reduction rates, in the presence of indigenous organic carbon, generally increased upon increasing nitrate supply from around 120 nmol cm-3 h-1 (low nitrate) up to 378 nmol cm-3 h-1 (high nitrate). The potential for nitrate reduction increased significantly with the addition of mangrove leaves, whereas the addition of simple, easily degradable carbon (acetate) resulted in an almost fivefold increase in nitrate reduction rates (up to 748 nmol cm-3  h-1 ). The hydraulic retention time also had an impact on the nitrate reducing capacity due to an increased contact time between nitrate and the benthic microbial community. Marine mangrove sediments have a high potential to mitigate nitrogen pollution, mainly governed by the presence of large amounts of degradable carbon in the form of litter. The mangrove sediments from this Caribbean island, currently exposed to a small tidal effect, could increase their nitrate elimination capacities due to prolonged water retention via engineering.


Assuntos
Sedimentos Geológicos , Nitratos , Guadalupe , Compostos Orgânicos , Carbono/análise
10.
Genome Biol Evol ; 15(9)2023 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-37708391

RESUMO

Bacteria and Archaea are traditionally regarded as organisms with a simple morphology constrained to a size of 2-3 µm. Nevertheless, the history of microbial research is rich in the description of giant bacteria exceeding tens and even hundreds of micrometers in length or diameter already from its early days, for example, Beggiatoa spp., to the present, for example, Candidatus Thiomargarita magnifica. While some of these giants are still being studied, some were lost to science, with merely drawings and photomicrographs as evidence for their existence. The physiology and biogeochemical role of giant bacteria have been studied, with a large focus on those involved in the sulfur cycle. With the onset of the genomic era, no special emphasis has been given to this group, in an attempt to gain a novel, evolutionary, and molecular understanding of the phenomenon of bacterial gigantism. The few existing genomic studies reveal a mysterious world of hyperpolyploid bacteria with hundreds to hundreds of thousands of chromosomes that are, in some cases, identical and in others, extremely different. These studies on giant bacteria reveal novel organelles, cellular compartmentalization, and novel mechanisms to combat the accumulation of deleterious mutations in polyploid bacteria. In this perspective paper, we provide a brief overview of what is known about the genomics of giant bacteria and build on that to highlight a few burning questions that await to be addressed.


Assuntos
Genômica , Tetranitrato de Pentaeritritol , Bactérias/genética , Archaea/genética , Evolução Biológica
11.
Sci Total Environ ; 900: 165816, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37506913

RESUMO

Free-living amoebae (FLA) are ubiquitous protozoa mainly found in aquatic environments. They are well-known reservoirs and vectors for the transmission of amoeba-resistant bacteria (ARB), most of which are pathogenic to humans. Yet, the natural bacterial microbiota associated with FLA remains largely unknown. Herein, we characterized the natural bacterial microbiota of different FLA species isolated from recreational waters in Guadeloupe. Monoxenic cultures of Naegleria australiensis, Naegleria sp. WTP3, Paravahlkampfia ustiana and Vahlkampfia sp. AK-2007 (Heterolobosea lineage) were cultivated under different grazing conditions, during successive passages. The whole bacterial microbiota of the waters and the amoebal cysts was characterized using 16S rRNA gene metabarcoding. The culturable subset of ARB was analyzed by mass spectrometry (MALDI-TOF MS), conventional 16S PCR, and disk diffusion method (to assess bacterial antibiotic resistance). Transmission electron microscopy was used to locate the ARB inside the amoebae. According to alpha and beta-diversity analyses, FLA bacterial microbiota were significantly different from the ones of their habitat. While Vogesella and Aquabacterium genera were detected in water, the most common ARB belonged to Pseudomonas, Bosea, and Escherichia/Shigella genera. The different FLA species showed both temporary and permanent associations with differentially bacterial taxa, suggesting host specificity. These associations depend on the number of passages and grazing conditions. Additionally, Naegleria, Vahlkampfia and Paravahlkampfia cysts were shown to naturally harbor viable bacteria of the Acinetobacter, Escherichia, Enterobacter, Pseudomonas and Microbacterium genera, all being pathogenic to humans. To our knowledge, this is the first time Paravahlkampfia and Vahlkampfia have been demonstrated as hosts of pathogenic ARB in water. Globally, the persistence of these ARB inside resistant cysts represents a potential health risk. To ensure the continued safety of recreational waters, it is crucial to (i) regularly control both the amoebae and their ARB and (ii) improve knowledge on amoebae-bacteria interactions to establish better water management protocols.


Assuntos
Amoeba , Microbiota , Humanos , Água , RNA Ribossômico 16S/genética , Antagonistas de Receptores de Angiotensina , Inibidores da Enzima Conversora de Angiotensina , Bactérias/genética
12.
ISME J ; 17(3): 340-353, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36528730

RESUMO

Thiovulum spp. (Campylobacterota) are large sulfur bacteria that form veil-like structures in aquatic environments. The sulfidic Movile Cave (Romania), sealed from the atmosphere for ~5 million years, has several aqueous chambers, some with low atmospheric O2 (~7%). The cave's surface-water microbial community is dominated by bacteria we identified as Thiovulum. We show that this strain, and others from subsurface environments, are phylogenetically distinct from marine Thiovulum. We assembled a closed genome of the Movile strain and confirmed its metabolism using RNAseq. We compared the genome of this strain and one we assembled from public data from the sulfidic Frasassi caves to four marine genomes, including Candidatus Thiovulum karukerense and Ca. T. imperiosus, whose genomes we sequenced. Despite great spatial and temporal separation, the genomes of the Movile and Frasassi Thiovulum were highly similar, differing greatly from the very diverse marine strains. We concluded that cave Thiovulum represent a new species, named here Candidatus Thiovulum stygium. Based on their genomes, cave Thiovulum can switch between aerobic and anaerobic sulfide oxidation using O2 and NO3- as electron acceptors, the latter likely via dissimilatory nitrate reduction to ammonia. Thus, Thiovulum is likely important to both S and N cycles in sulfidic caves. Electron microscopy analysis suggests that at least some of the short peritrichous structures typical of Thiovulum are type IV pili, for which genes were found in all strains. These pili may play a role in veil formation, by connecting adjacent cells, and in the motility of these exceptionally fast swimmers.


Assuntos
Cavernas , Epsilonproteobacteria , Cavernas/química , Enxofre/metabolismo , Epsilonproteobacteria/metabolismo , Romênia , Filogenia
13.
Environ Microbiol ; 14(6): 1584-95, 2012 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-22672589

RESUMO

In marine invertebrates that acquire their symbionts from the environment, these are generally only taken up during early developmental stages. In the symbiosis between lucinid clams and their intracellular sulfur-oxidizing bacteria, it has been shown that the juveniles acquire their symbionts from an environmental stock of free-living symbiont forms, but it is not known if adult clams are still competent to take up symbiotic bacteria from the environment. In this study, we investigated symbiont acquisition in adult specimens of the lucinid clam Codakia orbiculata, using transmission electron microscopy, fluorescence in situ hybridization, immunohistochemistry and PCR. We show here that adults that had no detectable symbionts after starvation in aquaria for 6 months, rapidly reacquired symbionts within days after being returned to their natural environments in the field. Control specimens that were starved and then exposed to seawater aquaria with sulfide did not reacquire symbionts. This indicates that the reacquisition of symbionts in the starved clams returned to the field was not caused by high division rates of a small pool of remaining symbionts that we were not able to detect with the methods used here. Immunohistochemistry with an antibody against actin, a protein involved in the phagocytosis of intracellular bacteria, showed that actin was expressed at the apical ends of the gill cells that took up symbionts, providing further evidence that the symbionts were acquired from the environment. Interestingly, actin expression was also observed in symbiont-containing cells of untreated lucinids freshly collected from the environment, indicating that symbiont acquisition from the environment occurs continuously in these clams throughout their lifetime.


Assuntos
Bivalves/microbiologia , Bivalves/fisiologia , Simbiose , Adolescente , Adulto , Animais , Bactérias/metabolismo , Bivalves/ultraestrutura , Brânquias/microbiologia , Humanos , Hibridização in Situ Fluorescente , Estágios do Ciclo de Vida , Masculino , Microscopia Eletrônica de Transmissão , Água do Mar/química , Água do Mar/microbiologia , Sulfetos/metabolismo
14.
PLoS One ; 17(8): e0273668, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36040904

RESUMO

Wolbachia Hertig, 1936 is an intracellular bacterial symbiont colonizing many arthropods. Of the studies done on the bacteria present in the superfamily Gerroidea Leach, 1815, no report of Wolbachia infection had yet been made. Thus, we checked the presence of Wolbachia in six Gerroidea species which colonize tropical aquatic environments by PCR using wsp primer set before sequencing and phylogenetic analyses. Insects were collected in the marine fringe of mangroves, in river estuaries, in swampy mangroves, and in ponds from Guadeloupe islands (Caribbean). Two new strains of Wolbachia were detected in these Gerroidea. They were named wLfran and wRmang. The wsp sequences suggest that the strains belong to the already described E supergroup or similar. wLfran is present in Limnogonus franciscanus Stål, 1859 and Rheumatobates trinitatis (China, 1943) while wRmang appears to be present exclusively in R. mangrovensis (China, 1943). Three other species were analysed, but did not appear to be infected: Brachymetra albinerva (Amyot & Serville, 1843), Halobates micans Eschscheltz, 1822, and Microvelia pulchella Westwood, 1834. The results presented here highlight for the first time the presence of new intracellular Wolbachia strains in Gerroidea colonising tropical aquatic environments like mangrove habitats from inlands to sea shore.


Assuntos
Artrópodes , Heterópteros , Wolbachia , Animais , Artrópodes/microbiologia , DNA Bacteriano , Filogenia , Wolbachia/genética
15.
iScience ; 25(1): 103552, 2022 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-35059602

RESUMO

Less than a handful of cuboid and squared cells have been described in nature, which makes them a rarity. Here, we show how Candidatus Thiosymbion cuboideus, a cube-like gammaproteobacterium, reproduces on the surface of marine free-living nematodes. Immunostaining of symbiont cells with an anti-fimbriae antibody revealed that they are host-polarized, as these appendages exclusively localized at the host-proximal (animal-attached) pole. Moreover, by applying a fluorescently labeled metabolic probe to track new cell wall insertion in vivo, we observed that the host-attached pole started septation before the distal one. Similarly, Ca. T. cuboideus cells immunostained with an anti-FtsZ antibody revealed a proximal-to-distal localization pattern of this tubulin homolog. Although FtsZ has been shown to arrange into squares in synthetically remodeled cuboid cells, here we show that FtsZ may also mediate the division of naturally occurring ones. This implies that, even in natural settings, membrane roundness is not required for FtsZ function.

16.
Front Plant Sci ; 13: 1030862, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36407590

RESUMO

Huanglongbing (HLB) is a disease that is responsible for the death of millions of trees worldwide. The bacterial causal agent belongs to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacterium lead most of the time to a reaction of the tree associated with callose synthesis at the phloem sieve plate. Thus, the obstruction of pores providing connections between adjacent sieve elements will limit the symplastic transport of the sugars and starches synthesized through photosynthesis. In the present article, we investigated the impact of the use of tetraploid Swingle citrumelo (Citrus paradisi Macfrad × Poncirus trifoliata [L.] Raf) rootstock on HLB tolerance, compared to its respective diploid. HLB-infected diploid and tetraploid rootstocks were investigated when grafted with Mexican and Persian limes. Secondary roots were anatomically studied using scanning electron microscopy (SEM) and transmission electron microscopy (TEM) to observe callose deposition at the phloem sieve plate and to evaluate the impact of the bacterium's presence at the cellular level. Voltammetry of immobilized microparticles (VIMP) in roots was applied to determine the oxidative stress status of root samples. In the field, Mexican and Persian lime leaves of trees grafted onto tetraploid rootstock presented less symptoms of HLB. Anatomical analysis showed much stronger secondary root degradation in diploid rootstock, compared to tetraploid rootstock. Analysis of the root sieve plate in control root samples showed that pores were approximately 1.8-fold larger in tetraploid Swingle citrumelo than in its respective diploid. SEM analyses of root samples did not reveal any callose deposition into pores of diploid and tetraploid genotypes. VIMP showed limited oxidative stress in tetraploid samples, compared to diploid ones. These results were even strongly enhanced when rootstocks were grafted with Persian limes, compared to Mexican limes, which was corroborated by stronger polyphenol contents. TEM analysis showed that the bacteria was present in both ploidy root samples with no major impacts detected on cell walls or cell structures. These results reveal that tetraploid Swingle citrumelo rootstock confers better tolerance to HLB than diploid. Additionally, an even stronger tolerance is achieved when the triploid Persian lime scion is associated.

17.
Science ; 376(6600): 1453-1458, 2022 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-35737788

RESUMO

Cells of most bacterial species are around 2 micrometers in length, with some of the largest specimens reaching 750 micrometers. Using fluorescence, x-ray, and electron microscopy in conjunction with genome sequencing, we characterized Candidatus (Ca.) Thiomargarita magnifica, a bacterium that has an average cell length greater than 9000 micrometers and is visible to the naked eye. These cells grow orders of magnitude over theoretical limits for bacterial cell size, display unprecedented polyploidy of more than half a million copies of a very large genome, and undergo a dimorphic life cycle with asymmetric segregation of chromosomes into daughter cells. These features, along with compartmentalization of genomic material and ribosomes in translationally active organelles bound by bioenergetic membranes, indicate gain of complexity in the Thiomargarita lineage and challenge traditional concepts of bacterial cells.


Assuntos
DNA Bacteriano , Organelas , Thiotrichaceae , Variações do Número de Cópias de DNA , DNA Bacteriano/análise , DNA Bacteriano/metabolismo , Estágios do Ciclo de Vida , Organelas/química , Organelas/metabolismo , Poliploidia , Thiotrichaceae/genética , Thiotrichaceae/crescimento & desenvolvimento , Thiotrichaceae/ultraestrutura
18.
Front Plant Sci ; 12: 685679, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34512684

RESUMO

Huanglongbing (HLB) is presently a major threat to the citrus industry. Because of this disease, millions of trees are currently dying worldwide. The putative causal agent is a motile bacteria belonging to Candidatus Liberibacter spp., which is transmitted by psyllids. The bacteria is responsible for the synthesis of callose at the phloem sieve plate, leading to the obstruction of the pores that provide connections between adjacent sieve elements, thus limiting the symplastic transport of the sugars and starches synthesized in leaves to the other plant organs. The Persian triploid lime (Citrus latifolia) is one of the most HLB-tolerant citrus varieties, but the determinants associated with the tolerance are still unknown. HLB-infected diploid Mexican lime (Citrus aurantiifolia) and Persian lime were investigated. The leaf petiole was analyzed using scanning electron microscopy (SEM) to observe callose deposition at the phloem sieve plate. Leaf starch contents and detoxification enzyme activities were investigated. In the field, Persian lime leaves present more limited symptoms due to HLB than the Mexican lime leaves do. Photosynthesis, stomatal conductance, and transpiration decreased compared with control plants, but values remained greater in the Persian than in the Mexican lime. Analysis of the petiole sieve plate in control petiole samples showed that pores were approximately 1.8-fold larger in the Persian than in the Mexican lime. SEM analyses of petiole samples of symptomatic leaves showed the important deposition of callose into pores of Mexican and Persian limes, whereas biochemical analyses revealed better detoxification in Persian limes than in Mexican limes. Moreover, SEM analyses of infected petiole samples of asymptomatic leaves showed much larger callose depositions into the Mexican lime pores than in the Persian lime pores, whereas biochemical traits revealed much better behavior in Persian limes than in Mexican limes. Our results reveal that polyploids present specific behaviors associated with important physiological and biochemical determinants that may explain the better tolerance of the Persian lime against HLB compared with the Mexican lime.

19.
Environ Microbiol ; 12(8): 2371-83, 2010 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21966926

RESUMO

Archaea may be involved in global energy cycles, and are known for their ability to interact with eukaryotic species (sponges, corals and ascidians) or as archaeal-bacterial consortia. The recently proposed phylum Thaumarchaeota may represent the deepest branching lineage in the archaeal phylogeny emerging before the divergence between Euryarchaeota and Crenarchaeota. Here we report the first characterization of two marine thaumarchaeal species from shallow waters that consist of multiple giant cells. One species is coated with sulfur-oxidizing γ-Proteobacteria. These new uncultured thaumarchaeal species are able to live in the sulfide-rich environments of a tropical mangrove swamp, either on living tissues such as roots or on various kinds of materials such as stones, sunken woods, etc. These archaea and archaea/bacteria associations have been studied using light microscopy, transmission electron microscopy and scanning electron microscopy. Species identification of archaeons and the putative bacterial symbiont have been assessed by 16S small subunit ribosomal RNA analysis. The sulfur-oxidizing ability of the bacteria has been assessed by genetic investigation on alpha-subunit of the adenosine-5'-phosphosulfate reductase/oxidase's (AprA). Species identifications have been confirmed by fluorescence in situ hybridization using specific probes designed in this study. In this article, we describe two new giant archaeal species that form the biggest archaeal filaments ever observed. One of these species is covered by a specific biofilm of sulfur-oxidizing γ-Proteobacteria. This study highlights an unexpected morphological and genetic diversity of the phylum Thaumarchaeota.


Assuntos
Archaea/classificação , Bactérias Redutoras de Enxofre/genética , Simbiose , Microbiologia da Água , Archaea/genética , Archaea/crescimento & desenvolvimento , Archaea/ultraestrutura , DNA Arqueal/genética , DNA Bacteriano/genética , Ecossistema , Gammaproteobacteria/genética , Gammaproteobacteria/crescimento & desenvolvimento , Concentração de Íons de Hidrogênio , Hibridização in Situ Fluorescente , Filogenia , RNA Ribossômico 16S/genética , Água do Mar/microbiologia , Análise de Sequência de DNA , Sulfetos/análise , Bactérias Redutoras de Enxofre/crescimento & desenvolvimento
20.
Biol Cell ; 101(1): 43-54, 2009 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-18598237

RESUMO

BACKGROUND INFORMATION: Marine nematodes belonging to the Stilbonematidae (Desmodoridae) family are described as living in obligatory association with sulfur-oxidizing chemoautotrophic ectosymbionts. The symbiotic bacteria carrying out this chemosynthesis should contain elemental sulfur in periplasmic granules as sulfur granules of chemoautotrophic endosymbionts described in various marine invertebrates. RESULTS: Based on TEM (transmission electron microscopy) analyses, extracellular bacteria surrounding Eubostrichus dianae possess these spherical periplasmic granules. Few investigative techniques can be used to identify elemental sulfur, S(8), such as EDXS (energy dispersive X-ray spectroscopy) and EELS (electron energy loss spectroscopy), which are associated with cryo-fixation of the sample to avoid sulfur loss. These techniques are time consuming, expensive and require technical skills. Raman microspectrometry applied to the analysis of E. dianae allowed us to detect elemental sulfur, S8, and confirmed the location of these sulfur clusters in the bacterial coat. In the same way, Raman spectrometry was positively applied to the endosymbiotic bivalve Codakia orbicularis, suggesting that this technique can be used to characterize sulfur in ecto- as well as in endo-symbiotic sulfur-oxidizing bacteria. CONCLUSIONS: As Raman spectrometry can be used on living organisms (without preliminary fixation) without sample damage and preserving the molecular structure of the sulfur (denatured during chemical fixation), it represents a very well-adapted investigative tool for biologists. This technique therefore permits us to detect quickly and easily (in a few seconds and on entire living animals) the presence of sulfur compounds in the symbiotic nematode.


Assuntos
Nematoides/microbiologia , Análise Espectral Raman/métodos , Enxofre/análise , Simbiose , Animais , Bactérias/química , Bivalves/microbiologia , Microscopia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA