Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 35
Filtrar
1.
Proc Biol Sci ; 289(1976): 20220711, 2022 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-35703052

RESUMO

Australopiths, a group of hominins from the Plio-Pleistocene of Africa, are characterized by derived traits in their crania hypothesized to strengthen the facial skeleton against feeding loads and increase the efficiency of bite force production. The crania of robust australopiths are further thought to be stronger and more efficient than those of gracile australopiths. Results of prior mechanical analyses have been broadly consistent with this hypothesis, but here we show that the predictions of the hypothesis with respect to mechanical strength are not met: some gracile australopith crania are as strong as that of a robust australopith, and the strength of gracile australopith crania overlaps substantially with that of chimpanzee crania. We hypothesize that the evolution of cranial traits that increased the efficiency of bite force production in australopiths may have simultaneously weakened the face, leading to the compensatory evolution of additional traits that reinforced the facial skeleton. The evolution of facial form in early hominins can therefore be thought of as an interplay between the need to increase the efficiency of bite force production and the need to maintain the structural integrity of the face.


Assuntos
Hominidae , Animais , Evolução Biológica , Força de Mordida , Face , Fósseis , Crânio/anatomia & histologia
2.
J Biomed Inform ; 62: 181-94, 2016 08.
Artigo em Inglês | MEDLINE | ID: mdl-27401857

RESUMO

The process of engineering design requires the product development team to balance the needs and limitations of many stakeholders, including those of the user, regulatory organizations, and the designing institution. This is particularly true in medical device design, where additional consideration must be given for a much more complex user-base that can only be accessed on a limited basis. Given this inherent challenge, few projects exist that consider design domain concepts, such as aspects of a detailed design, a detailed view of various stakeholders and their capabilities, along with the user-needs simultaneously. In this paper, we present a novel information model approach that combines a detailed model of design elements with a model of the design itself, customer requirements, and of the capabilities of the customer themselves. The information model is used to facilitate knowledge capture and automated reasoning across domains with a minimal set of rules by adopting a terminology that treats customer and design specific factors identically, thus enabling straightforward assessments. A uniqueness of this approach is that it systematically provides an integrated perspective on the key usability information that drive design decisions towards more universal or effective outcomes with the very design information impacted by the usability information. This can lead to cost-efficient optimal designs based on a direct inclusion of the needs of customers alongside those of business, marketing, and engineering requirements. Two case studies are presented to show the method's potential as a more effective knowledge management tool with built-in automated inferences that provide design insight, as well as its overall effectiveness as a platform to develop and execute medical device design from a holistic perspective.


Assuntos
Desenho de Equipamento , Equipamentos e Provisões , Comércio , Processamento Eletrônico de Dados , Humanos , Modelos Teóricos
3.
J Biomed Inform ; 55: 218-30, 2015 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-25956618

RESUMO

Medical device design is a challenging process, often requiring collaboration between medical and engineering domain experts. This collaboration can be best institutionalized through systematic knowledge transfer between the two domains coupled with effective knowledge management throughout the design innovation process. Toward this goal, we present the development of a semantic framework for medical device design that unifies a large medical ontology with detailed engineering functional models along with the repository of design innovation information contained in the US Patent Database. As part of our development, existing medical, engineering, and patent document ontologies were modified and interlinked to create a comprehensive medical device innovation and design tool with appropriate properties and semantic relations to facilitate knowledge capture, enrich existing knowledge, and enable effective knowledge reuse for different scenarios. The result is a Concept Ideation Framework for Medical Device Design (CIFMeDD). Key features of the resulting framework include function-based searching and automated inter-domain reasoning to uniquely enable identification of functionally similar procedures, tools, and inventions from multiple domains based on simple semantic searches. The significance and usefulness of the resulting framework for aiding in conceptual design and innovation in the medical realm are explored via two case studies examining medical device design problems.


Assuntos
Bases de Dados Factuais , Desenho de Equipamento , Equipamentos e Provisões/classificação , Bases de Conhecimento , Vocabulário Controlado , Desenho Assistido por Computador , Sistemas de Gerenciamento de Base de Dados/organização & administração , Interface Usuário-Computador
4.
J Theor Biol ; 341: 53-63, 2014 Jan 21.
Artigo em Inglês | MEDLINE | ID: mdl-24099719

RESUMO

Most long limb bones in terrestrial mammals exhibit a longitudinal curvature and have been found to be loaded in bending. Bone curvature poses a paradox in terms of the mechanical function of limb bones, for many believe the curvature in these bones increases bending stress, potentially reducing the bone's load carrying capacity (i.e., its mechanical strength). The aim of this study is to investigate the role of longitudinal bone curvature in the design of limb bones. In particular, it has been hypothesized that bone curvature results in a trade-off between the bone's mechanical strength and its bending predictability. We employed finite element analysis (FEA) of abstract and realistic human femora to address this issue. Geometrically simplified human femur models with different curvatures were developed and analyzed with a commercial FEA tool to examine how curvature affects the bone's bending predictability and load carrying capacity. Results were post-processed to yield probability density functions (PDFs) describing the circumferential location of maximum equivalent stress for various curvatures in order to assess bending predictability. To validate our findings, a finite element model was built from a CT scan of a real human femur and compared to the simplified femur model. We found general agreement in trends but some quantitative differences most likely due to the geometric differences between the digitally reconstructed and the simplified finite element models. As hypothesized by others, our results support the hypothesis that bone curvature can increase bending predictability, but at the expense of bone strength.


Assuntos
Fêmur/anatomia & histologia , Fêmur/fisiologia , Modelos Anatômicos , Adulto , Idoso , Fenômenos Biomecânicos/fisiologia , Fêmur/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Pessoa de Meia-Idade , Estresse Mecânico , Tomografia Computadorizada por Raios X , Suporte de Carga/fisiologia , Adulto Jovem
5.
Am J Phys Anthropol ; 153(2): 260-8, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24242913

RESUMO

It has been hypothesized that the extensively overlapping temporal and parietal bones of the squamosal sutures in Paranthropus boisei are adaptations for withstanding loads associated with feeding. Finite element analysis (FEA) was used to investigate the biomechanical effects of suture size (i.e., the area of overlap between the temporal and parietal bones) on stress, strain energy, and strain ratio in the squamosal sutures of Pan troglodytes and P. boisei (specimen OH 5) during biting. Finite element models (FEMs) of OH 5 and a P. troglodytes cranium were constructed from CT scans. These models contain sutures that approximate the actual suture sizes preserved in both crania. The FEM of Pan was then modified to create two additional FEMs with squamosal sutures that are 50% smaller and 25% larger than those in the original model. Comparisons among the models test the effect of suture size on the structural integrity of the squamosal suture as the temporal squama and parietal bone move relative to each other during simulated premolar biting. Results indicate that with increasing suture size there is a decreased risk of suture failure, and that maximum stress values in the OH 5 suture were favorable compared to values in the Pan model with the normal suture size. Strain ratios suggest that shear is an important strain regime in the squamosal suture. This study is consistent with the hypothesis that larger sutures help reduce the likelihood of suture failure under high biting loads.


Assuntos
Fenômenos Biomecânicos/fisiologia , Suturas Cranianas/anatomia & histologia , Suturas Cranianas/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Crânio/fisiologia , Adaptação Fisiológica , Animais , Antropologia Física , Módulo de Elasticidade , Análise de Elementos Finitos , Fósseis , Crânio/anatomia & histologia
6.
J Biomech Eng ; 136(8)2014 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-24860864

RESUMO

Bruising, the result of capillary failure due to trauma, is a common indication of abuse. However, the etiology of capillary failure has yet to be determined as the scale change from tissue to capillary represents several orders of magnitude. As a first step toward determining bruise etiology, we have developed a multilevel hierarchical finite element model (FEM) of a portion of the upper human arm using a commercial finite element tool and a series of three interconnected hierarchical submodels. The third and final submodel contains a portion of the muscle tissue in which a single capillary is embedded. Nonlinear, hyperelastic material properties were applied to skin, adipose, muscle, and capillary wall materials. A pseudostrain energy method was implemented to subtract rigid-body-like motion of the submodel volume experienced in the global model, and was critical for convergence and successful analyses in the submodels. The deformation and hoop stresses in the capillary wall were determined and compared with published capillary failure stress. For the dynamic load applied to the skin of the arm (physiologically simulating a punch), the model predicted that approximately 8% volume fraction of the capillary wall was above the reference capillary failure stress, indicating bruising would likely occur.


Assuntos
Capilares/lesões , Tecido Conjuntivo/irrigação sanguínea , Contusões , Análise de Elementos Finitos , Fenômenos Mecânicos , Fenômenos Biomecânicos , Humanos , Pulmão/irrigação sanguínea
7.
Clin Oral Investig ; 18(2): 369-75, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-23504207

RESUMO

OBJECTIVES: This study aimed to compare the patterns of stress distribution in a lower second premolar using three conventional occlusal loadings and two more realistic loading scenarios based on occlusal contact areas. MATERIALS AND METHODS: The teeth of a dried modern human skull were micro-CT scanned in maximum intercuspation contact with a Viscom X8060 NDT X-ray system. A kinematic analysis of the surface contacts between antagonistic right upper and lower teeth during the power stroke was carried out in the Occlusal Fingerprint Analyser (OFA) software. Stress distribution in the lower right second premolar was analysed using three-dimensional finite element (FE) methods, considering occlusal information taken from OFA results (cases 4-5). The output was compared to that obtained by loading the tooth with a single point force (cases 1-3). RESULTS: Results for cases 1-3 differ considerable from those of cases 4-5. The latter show that tensile stresses might be concentrated in grooves and fissures of the occlusal surface, in the marginal ridges, in the disto-lingual and in the distal side of the root. Moreover, the premolar experiences high tensile stresses in the buccal aspect of the crown, supporting the idea that abfraction might be a dominant factor in the aetiology of non-carious cervical lesions. CONCLUSIONS: The application of FE methods in dental biomechanics can be advanced considering individual wear patterns. CLINICAL RELEVANCE: More realistic occlusal loadings are of importance for both new developments in prosthetic dentistry and improvements of materials for tooth restoration, as well to address open questions about the worldwide spread problem of dental failure.


Assuntos
Dente Pré-Molar/fisiopatologia , Análise do Estresse Dentário/métodos , Dente Pré-Molar/diagnóstico por imagem , Análise de Elementos Finitos , Humanos , Microtomografia por Raio-X
8.
Am J Phys Anthropol ; 151(3): 339-55, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23794330

RESUMO

Recent biomechanical analyses examining the feeding adaptations of early hominins have yielded results consistent with the hypothesis that hard foods exerted a selection pressure that influenced the evolution of australopith morphology. However, this hypothesis appears inconsistent with recent reconstructions of early hominin diet based on dental microwear and stable isotopes. Thus, it is likely that either the diets of some australopiths included a high proportion of foods these taxa were poorly adapted to consume (i.e., foods that they would not have processed efficiently), or that aspects of what we thought we knew about the functional morphology of teeth must be wrong. Evaluation of these possibilities requires a recognition that analyses based on microwear, isotopes, finite element modeling, and enamel chips and cracks each test different types of hypotheses and allow different types of inferences. Microwear and isotopic analyses are best suited to reconstructing broad dietary patterns, but are limited in their ability to falsify specific hypotheses about morphological adaptation. Conversely, finite element analysis is a tool for evaluating the mechanical basis of form-function relationships, but says little about the frequency with which specific behaviors were performed or the particular types of food that were consumed. Enamel chip and crack analyses are means of both reconstructing diet and examining biomechanics. We suggest that current evidence is consistent with the hypothesis that certain derived australopith traits are adaptations for consuming hard foods, but that australopiths had generalized diets that could include high proportions of foods that were both compliant and tough.


Assuntos
Adaptação Biológica , Antropologia/métodos , Evolução Biológica , Dieta , Hominidae/anatomia & histologia , Animais , Isótopos de Carbono/análise , Esmalte Dentário/anatomia & histologia , Ingestão de Alimentos , Análise de Elementos Finitos , Hominidae/fisiologia
9.
J Hum Evol ; 62(1): 165-8, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22130183

RESUMO

Recent studies of dental microwear and craniofacial mechanics have yielded contradictory interpretations regarding the feeding ecology and adaptations of Australopithecus africanus. As part of this debate, the methods used in the mechanical studies have been criticized. In particular, it has been claimed that finite element analysis has been poorly applied to this research question. This paper responds to some of these mechanical criticisms, highlights limitations of dental microwear analysis, and identifies avenues of future research.


Assuntos
Comportamento Alimentar/fisiologia , Hominidae/anatomia & histologia , Hominidae/fisiologia , Desgaste dos Dentes/fisiopatologia , Dente/anatomia & histologia , Dente/fisiologia , Animais , Fenômenos Biomecânicos , Alimentos , Fósseis
10.
J Theor Biol ; 300: 242-53, 2012 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-22306513

RESUMO

We employed a probabilistic finite element analysis (FEA) method to determine how variability in material property values affects stress and strain values in a finite model of a Macaca fascicularis cranium. The material behavior of cortical bone varied in three ways: isotropic homogeneous, isotropic non-homogeneous, and orthotropic non-homogeneous. The material behavior of the trabecular bone and teeth was always treated as isotropic and homogeneous. All material property values for the cranium were randomized with a Gaussian distribution with either coefficients of variation (CVs) of 0.2 or with CVs calculated from empirical data. Latin hypercube sampling was used to determine the values of the material properties used in the finite element models. In total, four hundred and twenty six separate deterministic FE simulations were executed. We tested four hypotheses in this study: (1) uncertainty in material property values will have an insignificant effect on high stresses and a significant effect on high strains for homogeneous isotropic models; (2) the effect of variability in material property values on the stress state will increase as non-homogeneity and anisotropy increase; (3) variation in the in vivo shear strain values reported by Strait et al. (2005) and Ross et al. (2011) is not only due to variations in muscle forces and cranial morphology, but also due to variation in material property values; (4) the assumption of a uniform coefficient of variation for the material property values will result in the same trend in how moderate-to-high stresses and moderate-to-high strains vary with respect to the degree of non-homogeneity and anisotropy as the trend found when the coefficients of variation for material property values are calculated from empirical data. Our results supported the first three hypotheses and falsified the fourth. When material properties were varied with a constant CV, as non-homogeneity and anisotropy increased the level of variability in the moderate-to-high strains decreased while the level of variability in the moderate-to-high stresses increased. However, this is not the pattern observed when CVs calculated from empirical data were applied to the material properties where the lowest level of variability in both stresses and strains occurred when the cranium was modeled with a low level of non-homogeneity and anisotropy. Therefore, when constant material property variability is assumed, inaccurate trends in the level of variability present in modest-to-high magnitude stresses and strains are produced. When the cranium is modeled with the highest level of accuracy (high non-homogeneity and anisotropy) and when randomness in the material properties is calculated from empirical data, there is a large level of variability in the significant strains (CV=0.369) and a low level of variability in the modest-to-high magnitude stresses (CV=0.150). This result may have important implications with regard to the mechanical signals driving bone remodeling and adaptation through natural selection.


Assuntos
Macaca fascicularis/anatomia & histologia , Modelos Biológicos , Crânio/anatomia & histologia , Animais , Anisotropia , Cefalometria/métodos , Elasticidade , Análise de Elementos Finitos , Macaca fascicularis/fisiologia , Crânio/fisiologia , Estresse Mecânico
11.
Am J Phys Anthropol ; 147(1): 128-34, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21952986

RESUMO

Finite element analysis (FEA) is a widespread technique to evaluate the stress/strain distributions in teeth or dental supporting tissues. However, in most studies occlusal forces are usually simplified using a single vector (i.e., point load) either parallel to the long tooth axis or oblique to this axis. In this pilot study we show how lower first molar occlusal information can be used to investigate the stress distribution with 3D FEA in the supporting bone structure. The LM(1) and the LP(2) -LM(1) of a dried modern human skull were scanned by µCT in maximum intercuspation contact. A kinematic analysis of the surface contacts between LM(1) and LP(2) -LM(1) during the power stroke was carried out in the occlusal fingerprint analyzer (OFA) software to visualize contact areas during maximum intercuspation contact. This information was used for setting the occlusal molar loading to evaluate the stress distribution in the supporting bone structure using FEA. The output was compared to that obtained when a point force parallel to the long axis of the tooth was loaded in the occlusal basin. For the point load case, our results indicate that the buccal and lingual cortical plates do not experience notable stresses. However, when the occlusal contact areas are considered, the disto-lingual superior third of the mandible experiences high tensile stresses, while the medio-lingual cortical bone is subjected to high compressive stresses. Developing a more realistic loading scenario leads to better models to understand the relationship between masticatory function and mandibular shape and structures. Am J Phys Anthropol, 2012. © 2011 Wiley Periodicals, Inc.


Assuntos
Fenômenos Biomecânicos/fisiologia , Análise de Elementos Finitos , Mandíbula/fisiologia , Dente Molar/fisiologia , Adulto , Oclusão Dentária , Módulo de Elasticidade , Humanos , Masculino , Mandíbula/anatomia & histologia , Mandíbula/diagnóstico por imagem , Modelos Biológicos , Dente Molar/anatomia & histologia , Dente Molar/diagnóstico por imagem , Microtomografia por Raio-X
12.
Proc Natl Acad Sci U S A ; 106(7): 2124-9, 2009 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-19188607

RESUMO

The African Plio-Pleistocene hominins known as australopiths evolved a distinctive craniofacial morphology that traditionally has been viewed as a dietary adaptation for feeding on either small, hard objects or on large volumes of food. A historically influential interpretation of this morphology hypothesizes that loads applied to the premolars during feeding had a profound influence on the evolution of australopith craniofacial form. Here, we test this hypothesis using finite element analysis in conjunction with comparative, imaging, and experimental methods. We find that the facial skeleton of the Australopithecus type species, A. africanus, is well suited to withstand premolar loads. However, we suggest that the mastication of either small objects or large volumes of food is unlikely to fully explain the evolution of facial form in this species. Rather, key aspects of australopith craniofacial morphology are more likely to be related to the ingestion and initial preparation of large, mechanically protected food objects like large nuts and seeds. These foods may have broadened the diet of these hominins, possibly by being critical resources that australopiths relied on during periods when their preferred dietary items were in short supply. Our analysis reconciles apparent discrepancies between dietary reconstructions based on biomechanics, tooth morphology, and dental microwear.


Assuntos
Fenômenos Biomecânicos , Animais , Evolução Biológica , Dieta , Ecologia , Comportamento Alimentar , Análise de Elementos Finitos , Fósseis , Hominidae/anatomia & histologia , Macaca , Modelos Teóricos , Músculos/patologia , Paleontologia/métodos , Software
13.
J Anat ; 219(3): 259-72, 2011 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-21615398

RESUMO

Simulations based on finite element analysis (FEA) have attracted increasing interest in dentistry and dental anthropology for evaluating the stress and strain distribution in teeth under occlusal loading conditions. Nonetheless, FEA is usually applied without considering changes in contacts between antagonistic teeth during the occlusal power stroke. In this contribution we show how occlusal information can be used to investigate the stress distribution with 3D FEA in lower first molars (M(1)). The antagonistic crowns M(1) and P(2)-M(1) of two dried modern human skulls were scanned by µCT in maximum intercuspation (centric occlusion) contact. A virtual analysis of the occlusal power stroke between M(1) and P(2)-M(1) was carried out in the Occlusal Fingerprint Analyser (OFA) software, and the occlusal trajectory path was recorded, while contact areas per time-step were visualized and quantified. Stress distribution of the M(1) in selected occlusal stages were analyzed in strand7, considering occlusal information taken from OFA results for individual loading direction and loading area. Our FEA results show that the stress pattern changes considerably during the power stroke, suggesting that wear facets have a crucial influence on the distribution of stress on the whole tooth. Grooves and fissures on the occlusal surface are seen as critical locations, as tensile stresses are concentrated at these features. Properly accounting for the power stroke kinematics of occluding teeth results in quite different results (less tensile stresses in the crown) than usual loading scenarios based on parallel forces to the long axis of the tooth. This leads to the conclusion that functional studies considering kinematics of teeth are important to understand biomechanics and interpret morphological adaptation of teeth.


Assuntos
Oclusão Dentária , Análise do Estresse Dentário/métodos , Análise de Elementos Finitos , Dente Molar/anatomia & histologia , Adolescente , Adulto , Dente Pré-Molar/anatomia & histologia , Dente Pré-Molar/fisiologia , Fenômenos Biomecânicos/fisiologia , Feminino , Humanos , Masculino , Mastigação/fisiologia , Dente Molar/fisiologia , Estresse Mecânico
14.
J Anat ; 218(1): 151-62, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-20572898

RESUMO

Reliance on plant exudates is a relatively rare dietary specialization among mammals. One well-studied example of closely related exudate feeders is the New World marmosets and tamarins. Whereas marmosets actively gouge tree bark with their incisors to stimulate the flow of sap, tamarins are opportunistic exudate feeders that do not gouge bark. Several studies of the dentaries and jaw adductors indicate that marmosets exhibit specializations for increased gape at the expense of bite force. Few studies, however, have looked to the cranium of marmosets for evidence of functional specializations. Using 3D finite element models of the marmoset Callithrix jacchus and the tamarin Saguinus fuscicollis, we investigated the performance of the cranium under loading regimes that mimicked unilateral molar biting and bark-gouging. We investigated three measures of performance: the efficiency with which muscle force is transferred to bite force, the extent to which the models are stressed (a predictor of failure), and the work expended by muscles as they deform the skull (total strain energy). We found that during molar biting the two models exhibited similar levels of performance, though the Saguinus model had slightly higher mechanical efficiency, a slightly lower state of stress, and expended more energy on deformation. In contrast, under the bark-gouging load, Callithrix exhibited much higher mechanical efficiency than Saguinas, but did so at the expense of more work and higher levels of von Mises stress. This analysis illustrates that differences in the shapes of the skulls of Callithrix and Saguinus confer differences in performance. Whether these aspects of performance are targets of selection awaits broader comparative analyses.


Assuntos
Callithrix/anatomia & histologia , Callithrix/fisiologia , Leontopithecus/anatomia & histologia , Leontopithecus/fisiologia , Crânio/anatomia & histologia , Crânio/fisiologia , Animais , Análise de Elementos Finitos , Mastigação/fisiologia , Músculos da Mastigação/fisiologia , Modelos Anatômicos , Estresse Mecânico
15.
Evolution ; 71(5): 1327-1338, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28230246

RESUMO

Ostrich-like birds (Palaeognathae) show very little taxonomic diversity while their sister taxon (Neognathae) contains roughly 10,000 species. The main anatomical differences between the two taxa are in the crania. Palaeognaths lack an element in the bill called the lateral bar that is present in both ancestral theropods and modern neognaths, and have thin zones in the bones of the bill, and robust bony elements on the ventral surface of their crania. Here we use a combination of modeling and developmental experiments to investigate the processes that might have led to these differences. Engineering-based finite element analyses indicate that removing the lateral bars from a neognath increases mechanical stress in the upper bill and the ventral elements of the skull, regions that are either more robust or more flexible in palaeognaths. Surgically removing the lateral bar from neognath hatchlings led to similar changes. These results indicate that the lateral bar is load-bearing and suggest that this function was transferred to other bony elements when it was lost in palaeognaths. It is possible that the loss of the load-bearing lateral bar might have constrained diversification of skull morphology in palaeognaths and thus limited taxonomic diversity within the group.


Assuntos
Evolução Biológica , Aves/anatomia & histologia , Crânio/anatomia & histologia , Animais , Bico , Feminino , Struthioniformes
16.
Anat Rec (Hoboken) ; 300(1): 171-195, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-28000396

RESUMO

Australopiths exhibit a number of derived facial features that are thought to strengthen the face against high and/or repetitive loads associated with a diet that included mechanically challenging foods. Here, we use finite element analysis (FEA) to test hypotheses related to the purported strengthening role of the zygomatic root and "anterior pillar" in australopiths. We modified our previously constructed models of Sts 5 (Australopithecus africanus) and MH1 (A. sediba) to differ in the morphology of the zygomatic root, including changes to both the shape and positioning of the zygomatic root complex, in addition to creating variants of Sts 5 lacking anterior pillars. We found that both an expanded zygomatic root and the presence of "anterior pillars" reinforce the face against feeding loads. We also found that strain orientations are most compatible with the hypothesis that the pillar evolved to resist loads associated with premolar loading, and that this morphology has an ancillary effect of strengthening the face during all loading regimes. These results provide support for the functional hypotheses. However, we found that an anteriorly positioned zygomatic root increases strain magnitudes even in models with an inflated/reinforced root complex. These results suggest that an anteriorly placed zygomatic root complex evolved to enhance the efficiency of bite force production while facial reinforcement features, such as the anterior pillar and the expanded zygomatic root, may have been selected for in part to compensate for the weakening effect of this facial configuration. Anat Rec, 300:171-195, 2017. © 2016 Wiley Periodicals, Inc.


Assuntos
Hominidae/anatomia & histologia , Hominidae/fisiologia , Mastigação/fisiologia , Crânio/fisiologia , Zigoma/fisiologia , Animais , Fenômenos Biomecânicos/fisiologia , Força de Mordida , Dieta , Comportamento Alimentar/fisiologia , Análise de Elementos Finitos , Modelos Teóricos , Crânio/anatomia & histologia , Zigoma/anatomia & histologia
17.
Anat Rec (Hoboken) ; 299(12): 1734-1752, 2016 12.
Artigo em Inglês | MEDLINE | ID: mdl-27870343

RESUMO

Mammalian zygomatic arch shape is remarkably variable, ranging from nearly cylindrical to blade-like in cross section. Based on geometry, the arch can be hypothesized to be a sub-structural beam whose ability to resist deformation is related to cross sectional shape. We expect zygomatic arches with different cross sectional shapes to vary in the degree to which they resist local bending and torsion due to the contraction of the masseter muscle. A stiffer arch may lead to an increase in the relative proportion of applied muscle load being transmitted through the arch to other cranial regions, resulting in elevated cranial stress (and thus, strain). Here, we examine the mechanics of the zygomatic arch using a series of finite element modeling experiments in which the cross section of the arch of Pan troglodytes has been modified to conform to idealized shapes (cylindrical, elliptical, blade-like). We find that the shape of the zygomatic arch has local effects on stain that do not conform to beam theory. One exception is that possessing a blade-like arch leads to elevated strains at the postorbital zygomatic junction and just below the orbits. Furthermore, although modeling the arch as solid cortical bone did not have the effect of elevating strains in other parts of the face, as had been expected, it does have a small effect on stress associated with masseter contraction. These results are counterintuitive. Even though the arch has simple beam-like geometry, we fail to find a simple mechanical explanation for the diversity of arch shape. Anat Rec, 299:1734-1752, 2016. © 2016 Wiley Periodicals, Inc.


Assuntos
Mastigação/fisiologia , Estresse Mecânico , Zigoma/anatomia & histologia , Zigoma/fisiologia , Animais , Fenômenos Biomecânicos , Análise de Elementos Finitos , Pan troglodytes , Crânio/anatomia & histologia , Crânio/fisiologia
18.
Comput Methods Biomech Biomed Engin ; 19(16): 1772-1784, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27174200

RESUMO

OBJECTIVES: The purpose of this study is to develop a validated 3D finite element model of the pelvic floor system which can offer insights into the mechanics of anterior vaginal wall prolapse and have the ability to assess biomedical device treatment methods. The finite element results should accurately mimic the clinical findings of prolapse due to intra-abdominal pressure (IAP) and soft tissues impairment conditions. METHODS: A 3D model of pelvic system was created in Creo Parametric 2.0 based on MRI Images, which included uterus, cervix, vagina, cardinal ligaments, uterosacral ligaments, and a simplified levator plate and rectum. The geometrical model was imported into ANSYS Workbench 14.5. Mechanical properties of soft tissues were based on experimental data of tensile test results from current literature. Studies were conducted for IAP loadings on the vaginal wall and uterus, increasing from lowest to extreme values. RESULTS: Anterior vaginal wall collapse occurred at an IAP value corresponding to maximal valsalva and showed similar collapsed shape as clinical findings. Prolapse conditions exhibited high sensitivity to vaginal wall stiffness, whereas healthy tissues was found to support the vagina against prolapse. Ligament impairment was found to have only a secondary effect on prolapse.


Assuntos
Análise de Elementos Finitos , Prolapso de Órgão Pélvico/patologia , Simulação por Computador , Feminino , Humanos , Imageamento Tridimensional , Ligamentos/patologia , Imageamento por Ressonância Magnética/métodos , Modelos Anatômicos , Especificidade de Órgãos , Estresse Mecânico
19.
PeerJ ; 4: e2242, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27547550

RESUMO

The evolution of the modern human (Homo sapiens) cranium is characterized by a reduction in the size of the feeding system, including reductions in the size of the facial skeleton, postcanine teeth, and the muscles involved in biting and chewing. The conventional view hypothesizes that gracilization of the human feeding system is related to a shift toward eating foods that were less mechanically challenging to consume and/or foods that were processed using tools before being ingested. This hypothesis predicts that human feeding systems should not be well-configured to produce forceful bites and that the cranium should be structurally weak. An alternate hypothesis, based on the observation that humans have mechanically efficient jaw adductors, states that the modern human face is adapted to generate and withstand high biting forces. We used finite element analysis (FEA) to test two opposing mechanical hypotheses: that compared to our closest living relative, chimpanzees (Pan troglodytes), the modern human craniofacial skeleton is (1) less well configured, or (2) better configured to generate and withstand high magnitude bite forces. We considered intraspecific variation in our examination of human feeding biomechanics by examining a sample of geographically diverse crania that differed notably in shape. We found that our biomechanical models of human crania had broadly similar mechanical behavior despite their shape variation and were, on average, less structurally stiff than the crania of chimpanzees during unilateral biting when loaded with physiologically-scaled muscle loads. Our results also show that modern humans are efficient producers of bite force, consistent with previous analyses. However, highly tensile reaction forces were generated at the working (biting) side jaw joint during unilateral molar bites in which the chewing muscles were recruited with bilateral symmetry. In life, such a configuration would have increased the risk of joint dislocation and constrained the maximum recruitment levels of the masticatory muscles on the balancing (non-biting) side of the head. Our results do not necessarily conflict with the hypothesis that anterior tooth (incisors, canines, premolars) biting could have been selectively important in humans, although the reduced size of the premolars in humans has been shown to increase the risk of tooth crown fracture. We interpret our results to suggest that human craniofacial evolution was probably not driven by selection for high magnitude unilateral biting, and that increased masticatory muscle efficiency in humans is likely to be a secondary byproduct of selection for some function unrelated to forceful biting behaviors. These results are consistent with the hypothesis that a shift to softer foods and/or the innovation of pre-oral food processing techniques relaxed selective pressures maintaining craniofacial features that favor forceful biting and chewing behaviors, leading to the characteristically small and gracile faces of modern humans.

20.
Nat Commun ; 7: 10596, 2016 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-26853550

RESUMO

Australopithecus sediba has been hypothesized to be a close relative of the genus Homo. Here we show that MH1, the type specimen of A. sediba, was not optimized to produce high molar bite force and appears to have been limited in its ability to consume foods that were mechanically challenging to eat. Dental microwear data have previously been interpreted as indicating that A. sediba consumed hard foods, so our findings illustrate that mechanical data are essential if one aims to reconstruct a relatively complete picture of feeding adaptations in extinct hominins. An implication of our study is that the key to understanding the origin of Homo lies in understanding how environmental changes disrupted gracile australopith niches. Resulting selection pressures led to changes in diet and dietary adaption that set the stage for the emergence of our genus.


Assuntos
Força de Mordida , Simulação por Computador , Dieta , Hominidae , Arcada Osseodentária/fisiologia , Desgaste dos Dentes , Animais , Alimentos , Fósseis , Dente Molar , Pan troglodytes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA