Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Evol Anthropol ; 20(6): 238-53, 2011.
Artigo em Inglês | MEDLINE | ID: mdl-22170693

RESUMO

Faunal evolution over the last 65 million years of earth's history was dominated by mammalian radiations, but much of this era is poorly represented in Africa. Mammals first appeared early in the Mesozoic, living alongside dinosaurs for millions of years, but it was not until the extinction of dinosaurs 65 myr ago that the first major explosion of mammalian taxa took place. The Cenozoic (65 Ma to Recent) witnessed repeated and dynamic events involving the radiation, evolution, and extinction of mammalian faunas. Two of these events, each marking the extinction of one diverse fauna and subsequent establishment of another equally diverse fauna, both involving advanced catarrhine primates, are recorded in sites in the Turkana Basin, despite the poorly represented record of Cenozoic faunas elsewhere in sub-Saharan Africa. The first of these events occurred at the Oligocene-Miocene transition and the other at the Miocene-Pliocene transition.


Assuntos
Evolução Biológica , Ecossistema , Fósseis , Sedimentos Geológicos , Jacarés e Crocodilos , Animais , Etiópia , Peixes , Hominidae , Quênia , Mamíferos , Tartarugas
2.
PLoS One ; 8(3): e58667, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23516530

RESUMO

The Gray-faced Sengi (Rhynchocyon udzungwensis) is a newly-discovered species of sengi (elephant-shrew) and is the largest known extant representative of the order Macroscelidea. The discovery of R. udzungwensis provides an opportunity to investigate the scaling relationship between brain size and body size within Macroscelidea, and to compare this allometry among insectivorous species of Afrotheria and other eutherian insectivores. We performed a spin-echo magnetic resonance imaging (MRI) scan on a preserved adult specimen of R. udzungwensis using a 7-Tesla high-field MR imaging system. The brain was manually segmented and its volume was compiled into a dataset containing previously-published allometric data on 56 other species of insectivore-grade mammals including representatives of Afrotheria, Soricomorpha and Erinaceomorpha. Results of log-linear regression indicate that R. udzungwensis exhibits a brain size that is consistent with the allometric trend described by other members of its order. Inter-specific comparisons indicate that macroscelideans as a group have relatively large brains when compared with similarly-sized terrestrial mammals that also share a similar diet. This high degree of encephalization within sengis remains robust whether sengis are compared with closely-related insectivorous afrotheres, or with more-distantly-related insectivorous laurasiatheres.


Assuntos
Tamanho Corporal , Encéfalo/anatomia & histologia , Eulipotyphla/anatomia & histologia , Animais , Eulipotyphla/fisiologia , Evolução Molecular , Tamanho do Órgão , Filogenia
3.
PLoS One ; 5(9): e12553, 2010 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-20838442

RESUMO

BACKGROUND: There have been numerous studies on dinosaur biogeographic distribution patterns. However, these distribution data have not yet been applied to ecological questions. Ecological studies of dinosaurs have tended to focus on reconstructing individual taxa, usually through comparisons to modern analogs. Fewer studies have sought to determine if the ecological structure of fossil assemblages is preserved and, if so, how dinosaur communities varied. Climate is a major component driving differences between communities. If the ecological structure of a fossil locality is preserved, we expect that dinosaur assemblages from similar environments will share a similar ecological structure. METHODOLOGY/PRINCIPAL FINDINGS: This study applies Ecological Structure Analysis (ESA) to a dataset of 100+ dinosaur taxa arranged into twelve composite fossil assemblages from around the world. Each assemblage was assigned a climate zone (biome) based on its location. Dinosaur taxa were placed into ecomorphological categories. The proportion of each category creates an ecological profile for the assemblage, which were compared using cluster and principal components analyses. Assemblages grouped according to biome, with most coming from arid or semi-arid/seasonal climates. Differences between assemblages are tied to the proportion of large high-browsing vs. small ground-foraging herbivores, which separates arid from semi-arid and moister environments, respectively. However, the effects of historical, taphonomic, and other environmental factors are still evident. CONCLUSIONS/SIGNIFICANCE: This study is the first to show that the general ecological structure of Late Jurassic dinosaur assemblages is preserved at large scales and can be assessed quantitatively. Despite a broad similarity of climatic conditions, a degree of ecological variation is observed between assemblages, from arid to moist. Taxonomic differences between Asia and the other regions demonstrate at least one case of ecosystem convergence. The proportion of different ecomorphs, which reflects the prevailing climatic and environmental conditions present during fossil deposition, may therefore be used to differentiate Late Jurassic dinosaur fossil assemblages. This method is broadly applicable to different taxa and times, allowing one to address questions of evolutionary, biogeographic, and climatic importance.


Assuntos
Dinossauros , Ecossistema , Fósseis , Paleontologia , Animais , Dinossauros/classificação , Dinossauros/crescimento & desenvolvimento
4.
J Hum Evol ; 51(5): 506-12, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-16914180

RESUMO

Morotopithecus bishopi and Afropithecus turkanensis are two large-bodied hominoid primates from early Miocene deposits of eastern Africa. Researchers have used both cranial and postcranial characters to distinguish these two species. Unfortunately, of the fossil material attributed to each, only the face, palate, and upper dentition are preserved well enough in both species for direct comparisons. There are currently no known directly comparable postcranial elements. In this study, we reevaluated dental characters argued to distinguish the type specimens of Morotopithecus from Afropithecus: relative size of the upper premolars and M3. Exact randomization methods were used to address two questions. First, is it possible to find the degree of dental-size difference observed between Morotopithecus (UMP 62-11) and Afropithecus (KNM-WK 16999) within extant African hominoids? Second, what is the probability of observing the levels of difference found between the fossils among pairs of extant individuals? Metric differences in relative premolar and M3 size were calculated between all possible pairs within the extant sample and the observed difference of the fossil pair was then compared to the resulting distribution of extant pairs. The observed size differences for all comparisons in the fossil teeth were well within the variation observed in the extant African hominoid samples (p>0.05). In light of these results and other currently available cranial evidence, we suggest that the type specimens of Morotopithecus and Afropithecus are not different enough to support taxonomic distinction.


Assuntos
Hominidae/classificação , Paleodontologia , Dente/anatomia & histologia , África Oriental , Animais , Feminino , Fósseis , Gorilla gorilla/anatomia & histologia , História Antiga , Hominidae/anatomia & histologia , Masculino , Pan troglodytes/anatomia & histologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA