Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Proc Natl Acad Sci U S A ; 113(41): E6145-E6152, 2016 10 11.
Artigo em Inglês | MEDLINE | ID: mdl-27671624

RESUMO

Laquinimod is an oral drug currently being evaluated for the treatment of relapsing, remitting, and primary progressive multiple sclerosis and Huntington's disease. Laquinimod exerts beneficial activities on both the peripheral immune system and the CNS with distinctive changes in CNS resident cell populations, especially astrocytes and microglia. Analysis of genome-wide expression data revealed activation of the aryl hydrocarbon receptor (AhR) pathway in laquinimod-treated mice. The AhR pathway modulates the differentiation and function of several cell populations, many of which play an important role in neuroinflammation. We therefore tested the consequences of AhR activation in myelin oligodendrocyte glycoprotein (MOG)-induced experimental autoimmune encephalomyelitis (EAE) using AhR knockout mice. We demonstrate that the pronounced effect of laquinimod on clinical score, CNS inflammation, and demyelination in EAE was abolished in AhR-/- mice. Furthermore, using bone marrow chimeras we show that deletion of AhR in the immune system fully abrogates, whereas deletion within the CNS partially abrogates the effect of laquinimod in EAE. These data strongly support the idea that AhR is necessary for the efficacy of laquinimod in EAE and that laquinimod may represent a first-in-class drug targeting AhR for the treatment of multiple sclerosis and other neurodegenerative diseases.


Assuntos
Encefalomielite Autoimune Experimental/etiologia , Encefalomielite Autoimune Experimental/metabolismo , Quinolonas/farmacologia , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/metabolismo , Animais , Citocromo P-450 CYP1A1/genética , Citocromo P-450 CYP1A1/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Encefalomielite Autoimune Experimental/patologia , Feminino , Deleção de Genes , Expressão Gênica , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Hepatócitos/metabolismo , Humanos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Camundongos , Camundongos Knockout , Receptores de Hidrocarboneto Arílico/genética , Linfócitos T/imunologia , Linfócitos T/metabolismo , Transcriptoma
2.
Hum Mol Genet ; 25(18): 3975-3987, 2016 09 15.
Artigo em Inglês | MEDLINE | ID: mdl-27466197

RESUMO

Pridopidine has demonstrated improvement in Huntington Disease (HD) motor symptoms as measured by secondary endpoints in clinical trials. Originally described as a dopamine stabilizer, this mechanism is insufficient to explain the clinical and preclinical effects of pridopidine. This study therefore explored pridopidine's potential mechanisms of action. The effect of pridopidine versus sham treatment on genome-wide expression profiling in the rat striatum was analysed and compared to the pathological expression profile in Q175 knock-in (Q175 KI) vs Q25 WT mouse models. A broad, unbiased pathway analysis was conducted, followed by testing the enrichment of relevant pathways. Pridopidine upregulated the BDNF pathway (P = 1.73E-10), and its effect on BDNF secretion was sigma 1 receptor (S1R) dependent. Many of the same genes were independently found to be downregulated in Q175 KI mice compared to WT (5.2e-7 < P < 0.04). In addition, pridopidine treatment upregulated the glucocorticoid receptor (GR) response, D1R-associated genes and the AKT/PI3K pathway (P = 1E-10, P = 0.001, P = 0.004, respectively). Pridopidine upregulates expression of BDNF, D1R, GR and AKT/PI3K pathways, known to promote neuronal plasticity and survival, as well as reported to demonstrate therapeutic benefit in HD animal models. Activation of S1R, necessary for its effect on the BDNF pathway, represents a core component of the mode of action of pridopidine. Since the newly identified pathways are downregulated in neurodegenerative diseases, including HD, these findings suggest that pridopidine may exert neuroprotective effects beyond its role in alleviating some symptoms of HD.


Assuntos
Fator Neurotrófico Derivado do Encéfalo/biossíntese , Corpo Estriado/metabolismo , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/administração & dosagem , Piperidinas/administração & dosagem , Animais , Fator Neurotrófico Derivado do Encéfalo/genética , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/patologia , Modelos Animais de Doenças , Regulação da Expressão Gênica/genética , Genoma , Humanos , Doença de Huntington/genética , Doença de Huntington/patologia , Camundongos , Fármacos Neuroprotetores/metabolismo , Ratos , Receptores de Dopamina D5/biossíntese , Receptores de Dopamina D5/genética , Receptores de Glucocorticoides/biossíntese , Receptores de Glucocorticoides/genética , Transdução de Sinais/efeitos dos fármacos
3.
Nature ; 488(7411): 414-8, 2012 Aug 16.
Artigo em Inglês | MEDLINE | ID: mdl-22801504

RESUMO

Protein stability, assembly, localization and regulation often depend on the formation of disulphide crosslinks between cysteine side chains. Enzymes known as sulphydryl oxidases catalyse de novo disulphide formation and initiate intra- and intermolecular dithiol/disulphide relays to deliver the disulphides to substrate proteins. Quiescin sulphydryl oxidase (QSOX) is a unique, multi-domain disulphide catalyst that is localized primarily to the Golgi apparatus and secreted fluids and has attracted attention owing to its overproduction in tumours. In addition to its physiological importance, QSOX is a mechanistically intriguing enzyme, encompassing functions typically carried out by a series of proteins in other disulphide-formation pathways. How disulphides are relayed through the multiple redox-active sites of QSOX and whether there is a functional benefit to concatenating these sites on a single polypeptide are open questions. Here we present the first crystal structure of an intact QSOX enzyme, derived from a trypanosome parasite. Notably, sequential sites in the disulphide relay were found more than 40 Å apart in this structure, too far for direct disulphide transfer. To resolve this puzzle, we trapped and crystallized an intermediate in the disulphide hand-off, which showed a 165° domain rotation relative to the original structure, bringing the two active sites within disulphide-bonding distance. The comparable structure of a mammalian QSOX enzyme, also presented here, shows further biochemical features that facilitate disulphide transfer in metazoan orthologues. Finally, we quantified the contribution of concatenation to QSOX activity, providing general lessons for the understanding of multi-domain enzymes and the design of new catalytic relays.


Assuntos
Dissulfetos/metabolismo , Oxirredutases/química , Oxirredutases/metabolismo , Trypanosoma brucei brucei/enzimologia , Motivos de Aminoácidos , Animais , Biocatálise , Domínio Catalítico , Cristalografia por Raios X , Humanos , Camundongos , Modelos Moleculares , Oxirredução , Conformação Proteica , Rotação
4.
BMC Med Inform Decis Mak ; 18(1): 138, 2018 12 20.
Artigo em Inglês | MEDLINE | ID: mdl-30572891

RESUMO

BACKGROUND: A growing number of clinical trials use various sensors and smartphone applications to collect data outside of the clinic or hospital, raising the question to what extent patients comply with the unique requirements of remote study protocols. Compliance is particularly important in conditions where patients are motorically and cognitively impaired. Here, we sought to understand patient compliance in digital trials of two such pathologies, Parkinson's disease (PD) and Huntington disease (HD). METHODS: Patient compliance was assessed in two remote, six-month clinical trials of PD (n = 51, Clinician Input Study funded by the Michael J. Fox Foundation for Parkinson's Research) and HD (n = 17, sponsored by Teva Pharmaceuticals). We monitored four compliance metrics specific to remote studies: smartphone app-based medication reporting, app-based symptoms reporting, the duration of smartwatch data streaming except while charging, and the performance of structured motor tasks at home. RESULTS: While compliance over time differed between the PD and HD studies, both studies maintained high compliance levels for their entire six month duration. None (- 1%) to a 30% reduction in compliance rate was registered for HD patients, and a reduction of 34 to 53% was registered for the PD study. Both studies exhibited marked changes in compliance rates during the initial days of enrollment. Interestingly, daily smartwatch data streaming patterns were similar, peaking around noon, dropping sharply in the late evening hours around 8 pm, and having a mean of 8.6 daily streaming hours for the PD study and 10.5 h for the HD study. Individual patients tended to have either high or low compliance across all compliance metrics as measured by pairwise correlation. Encouragingly, predefined schedules and app-based reminders fulfilled their intended effect on the timing of medication intake reporting and performance of structured motor tasks at home. CONCLUSIONS: Our findings suggest that maintaining compliance over long durations is feasible, promote the use of predefined app-based reminders, and highlight the importance of patient selection as highly compliant patients typically have a higher adherence rate across the different aspects of the protocol. Overall, these data can serve as a reference point for the design of upcoming remote digital studies. TRIAL REGISTRATION: Trials described in this study include a sub-study of the Open PRIDE-HD Huntington's disease study (TV7820-CNS-20016), which was registered on July 7th, 2015, sponsored by Teva Pharmaceuticals Ltd., and registered on Clinicaltrials.gov as NCT02494778 and EudraCT as 2015-000904-24 .


Assuntos
Doença de Huntington/psicologia , Aplicativos Móveis , Doença de Parkinson/psicologia , Cooperação do Paciente , Smartphone , Idoso , Estudos Clínicos como Assunto , Feminino , Humanos , Doença de Huntington/diagnóstico , Doença de Huntington/terapia , Masculino , Pessoa de Meia-Idade , Doença de Parkinson/diagnóstico , Doença de Parkinson/terapia , Projetos de Pesquisa , Fatores de Tempo
5.
Neurobiol Dis ; 97(Pt A): 46-59, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27818324

RESUMO

The tri-nucleotide repeat expansion underlying Huntington disease (HD) results in corticostriatal synaptic dysfunction and subsequent neurodegeneration of striatal medium spiny neurons (MSNs). HD is a devastating autosomal dominant disease with no disease-modifying treatments. Pridopidine, a postulated "dopamine stabilizer", has been shown to improve motor symptoms in clinical trials of HD. However, the target(s) and mechanism of action of pridopidine remain to be fully elucidated. As binding studies identified sigma-1 receptor (S1R) as a high-affinity receptor for pridopidine, we evaluated the relevance of S1R as a therapeutic target of pridopidine in HD. S1R is an endoplasmic reticulum - (ER) resident transmembrane protein and is regulated by ER calcium homeostasis, which is perturbed in HD. Consistent with ER calcium dysregulation, we observed striatal upregulation of S1R in aged YAC128 transgenic HD mice and HD patients. We previously demonstrated that dendritic MSN spines are lost in aged corticostriatal co-cultures from YAC128 mice. We report here that pridopidine and the chemically similar S1R agonist 3-PPP prevent MSN spine loss in aging YAC128 co-cultures. Spine protection was blocked by neuronal deletion of S1R. Pridopidine treatment suppressed supranormal ER Ca2+ release, restored ER calcium levels and reduced excessive store-operated calcium (SOC) entry in spines, which may account for its synaptoprotective effects. Normalization of ER Ca2+ levels by pridopidine was prevented by S1R deletion. To evaluate long-term effects of pridopidine, we analyzed expression profiles of calcium signaling genes. Pridopidine elevated striatal expression of calbindin and homer1a, whereas their striatal expression was reduced in aged Q175KI and YAC128 HD mouse models compared to WT. Pridopidine and 3-PPP are proposed to prevent calcium dysregulation and synaptic loss in a YAC128 corticostriatal co-culture model of HD. The actions of pridopidine were mediated by S1R and led to normalization of ER Ca2+ release, ER Ca2+ levels and spine SOC entry in YAC128 MSNs. This is a new potential mechanism of action for pridopidine, highlighting S1R as a potential target for HD therapy. Upregulation of striatal proteins that regulate calcium, including calbindin and homer1a, upon chronic therapy with pridopidine, may further contribute to long-term beneficial effects of pridopidine in HD.


Assuntos
Doença de Huntington/tratamento farmacológico , Doença de Huntington/metabolismo , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Receptores sigma/metabolismo , Envelhecimento/efeitos dos fármacos , Envelhecimento/metabolismo , Animais , Calbindinas/metabolismo , Cálcio/metabolismo , Cátions Bivalentes/metabolismo , Técnicas de Cocultura , Corpo Estriado/efeitos dos fármacos , Corpo Estriado/metabolismo , Espinhas Dendríticas/efeitos dos fármacos , Espinhas Dendríticas/metabolismo , Modelos Animais de Doenças , Retículo Endoplasmático/efeitos dos fármacos , Retículo Endoplasmático/metabolismo , Humanos , Camundongos , Camundongos Transgênicos , Fármacos Neuroprotetores/química , Piperidinas/química , Ratos Endogâmicos SHR , Receptores sigma/genética , Sinapses/efeitos dos fármacos , Sinapses/metabolismo , Receptor Sigma-1
6.
Brain ; 139(Pt 7): 2050-62, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27190009

RESUMO

The treatment of early Parkinson's disease with dopaminergic agents remains the mainstay of symptomatic therapy for this incurable neurodegenerative disorder. However, clinical responses to dopaminergic drugs vary substantially from person to person due to individual-, drug- and disease-related factors that may in part be genetically determined. Using clinical data and DNA samples ascertained through the largest placebo-controlled clinical trial of the monoamine oxidase B inhibitor, rasagiline (ClinicalTrials.gov number, NCT00256204), we examined how polymorphisms in candidate genes associate with the clinical response to rasagiline in early Parkinson's disease. Variants in genes that express proteins involved in the pharmacokinetics and pharmacodynamics of rasagiline, and genes previously associated with the risk to develop Parkinson's disease were genotyped. The LifeTechnologies OpenArray NT genotyping platform and polymerase chain reaction-based methods were used to analyse 204 single nucleotide polymorphisms and five variable number tandem repeats from 30 candidate genes in 692 available DNA samples from this clinical trial. The peak symptomatic response to rasagiline, the rate of symptom progression, and their relation to genetic variation were examined controlling for placebo effects using general linear and mixed effects models, respectively. Single nucleotide polymorphisms, rs2283265 and rs1076560, in the dopamine D2 receptor gene (DRD2) were found to be significantly associated with a favourable peak response to rasagiline at 12 weeks in early Parkinson's disease after controlling for multiple testing. From a linear regression, the betas were 2.5 and 2.38, respectively, with false discovery rate-corrected P-values of 0.032. These polymorphisms were in high linkage disequilibrium with each other (r(2) = 0.96) meaning that the same clinical response signal was identified by each of them. No polymorphisms were associated with slowing the rate of worsening in Parkinson symptoms from Weeks 12 to 36 after correction for multiple testing. This is the largest and most comprehensive pharmacogenetics study to date examining clinical response to an anti-parkinsonian drug and the first to be conducted in patients with early stage Parkinson's disease receiving monotherapy. The results indicate a clinically meaningful benefit to rasagiline in terms of the magnitude of improvement in parkinsonian symptoms for those with the favourable response genotypes. Future work is needed to elucidate the specific mechanisms through which these DRD2 variants operate in modulating the function of the nigrostriatal dopaminergic system.media-1vid110.1093/brain/aww109_video_abstractaww109_video_abstract.


Assuntos
Indanos/farmacologia , Inibidores da Monoaminoxidase/farmacologia , Avaliação de Resultados em Cuidados de Saúde , Doença de Parkinson/tratamento farmacológico , Doença de Parkinson/genética , Testes Farmacogenômicos/métodos , Receptores de Dopamina D2/genética , Idoso , Feminino , Seguimentos , Humanos , Indanos/administração & dosagem , Masculino , Pessoa de Meia-Idade , Inibidores da Monoaminoxidase/administração & dosagem , Polimorfismo de Nucleotídeo Único , Índice de Gravidade de Doença , Sequências de Repetição em Tandem
7.
BMC Med Ethics ; 18(1): 63, 2017 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-29149849

RESUMO

BACKGROUND: As part of the preparations to establish a population-based biobank in a large Israeli health organization, we aimed to investigate through focus groups the knowledge, perceptions and attitudes of insured Israelis, toward biobanking, and then, after input from focus groups' participants, to empirically assess the impact of a revised recruitment process on recruitment rates. METHODS: 1) Six Focus group discussions were conducted (n = 10 per group) with individuals who had routine blood laboratory tests taken in the last 2 years. 2) After addressing the issues raised in the focus groups and revising the recruitment process, individuals undergoing routine blood tests in phlebotomy clinics (N = 10,262) were invited to participate in the future biobank. RESULTS: At the outset of the focus groups there was an overall positive response to the prospect of a population-based biobank. Concerns revolved around infringement on privacy, fears of the "big brother"(e.g. insurance companies), and anxiety about inequality. Reaction to the language of the informed consent document revolved around concerns over ability to maintain anonymity, to withdraw consent, involvement of commercial entities, and the general tenor of the informed consent, which was perceived as legalistic and unilateral. In general, the longer participants were exposed to discussion about the biobank, the less likely they were to consent to sign in. Overall, only 20% (12) of the 60 participants stated they would agree to sign in by the end of the 2 hour group session. The feedback obtained from the focus groups was used in the second stage ("real life") of the study. A team of recruiters received extensive training to enable fruitful discussion and a detailed explanation to questions and concerns raised during the recruitment process. During the second stage of the study, after revising the consent form and training recruiters, a 53% consent rate was observed among 10,262 participants, more than 4 fold higher than estimated at the focus group stage. CONCLUSIONS: The qualitative focus group research helped identify important perceptions and concerns, which were subsequently addressed in the revised consent form and in the discussion the recruiters had with potential biobank donors.


Assuntos
Atitude Frente a Saúde , Bancos de Espécimes Biológicos , Comportamento de Escolha , Consentimento Livre e Esclarecido , Seleção de Pacientes , Adulto , Idoso , Confidencialidade , Termos de Consentimento , Feminino , Grupos Focais , Humanos , Israel , Masculino , Pessoa de Meia-Idade , Percepção , Privacidade , Pesquisa Qualitativa
8.
Sci Rep ; 14(1): 2153, 2024 01 25.
Artigo em Inglês | MEDLINE | ID: mdl-38272949

RESUMO

Microglia are the resident immune cells in the brain that play a key role in driving neuroinflammation, a hallmark of neurodegenerative disorders. Inducible microglia-like cells have been developed as an in vitro platform for molecular and therapeutic hypothesis generation and testing. However, there has been no systematic assessment of similarity of these cells to primary human microglia along with their responsiveness to external cues expected of primary cells in the brain. In this study, we performed transcriptional characterization of commercially available human inducible pluripotent stem cell (iPSC)-derived microglia-like (iMGL) cells by bulk and single cell RNA sequencing to assess their similarity with primary human microglia. To evaluate their stimulation responsiveness, iMGL cells were treated with Liver X Receptor (LXR) pathway agonists and their transcriptional responses characterized by bulk and single cell RNA sequencing. Bulk transcriptome analyses demonstrate that iMGL cells have a similar overall expression profile to freshly isolated human primary microglia and express many key microglial transcription factors and functional and disease-associated genes. Notably, at the single-cell level, iMGL cells exhibit distinct transcriptional subpopulations, representing both homeostatic and activated states present in normal and diseased primary microglia. Treatment of iMGL cells with LXR pathway agonists induces robust transcriptional changes in lipid metabolism and cell cycle at the bulk level. At the single cell level, we observe heterogeneity in responses between cell subpopulations in homeostatic and activated states and deconvolute bulk expression changes into their corresponding single cell states. In summary, our results demonstrate that iMGL cells exhibit a complex transcriptional profile and responsiveness, reminiscent of in vivo microglia, and thus represent a promising model system for therapeutic development in neurodegeneration.


Assuntos
Células-Tronco Pluripotentes Induzidas , Doenças Neurodegenerativas , Células-Tronco Pluripotentes , Humanos , Microglia/metabolismo , Fatores de Transcrição/metabolismo , Doenças Neurodegenerativas/genética , Doenças Neurodegenerativas/metabolismo
9.
Alzheimers Dement ; 9(2): 132-6, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23333464

RESUMO

A number of recent studies have not replicated the association of the translocase of the outer mitochondrial membrane pore subunit (TOMM40) rs10524523 polymorphism, which is in linkage disequilibrium with apolipoprotein E (APOE), with age of onset of Alzheimer's disease (AD). This perspective describes the differences between these later studies and the original experiments. We highlight the necessity for using standardized and informative assessment tools and processes when determining the age of development of AD or AD symptoms, and also stress that this clinical phenotype is best measured reliably in prospective studies during which subjects are monitored over time. This is true when assessing potential biomarkers for age of onset and when assessing the therapeutic potential of medicines that may delay the onset or progression of this disease.


Assuntos
Idade de Início , Doença de Alzheimer/genética , Apolipoproteínas E/genética , Ensaios Clínicos como Assunto/normas , Proteínas de Membrana Transportadoras/genética , Genótipo , Humanos , Desequilíbrio de Ligação , Proteínas do Complexo de Importação de Proteína Precursora Mitocondrial , Fenótipo , Polimorfismo de Nucleotídeo Único
10.
Commun Biol ; 6(1): 277, 2023 03 16.
Artigo em Inglês | MEDLINE | ID: mdl-36928598

RESUMO

Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen of over 16,000 RNAi triggers against the SARS-CoV-2 genome, using a massively parallel assay to identify hyper-potent siRNAs. We selected Ten candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity (IC50 < 20 pM) and strong blockade of infectivity in live-virus experiments. We further enhanced this activity by combinatorial pairing of the siRNA candidates and identified cocktails that were active against multiple types of variants of concern (VOC). We then examined over 2,000 possible mutations in the siRNA target sites by using saturation mutagenesis and confirmed broad protection of the leading cocktail against future variants. Finally, we demonstrated that intranasal administration of this siRNA cocktail effectively attenuates clinical signs and viral measures of disease in the gold-standard Syrian hamster model. Our results pave the way for the development of an additional layer of antiviral prophylaxis that is orthogonal to vaccines and monoclonal antibodies.


Assuntos
COVID-19 , RNA Interferente Pequeno , SARS-CoV-2 , Animais , Cricetinae , Administração Intranasal , COVID-19/prevenção & controle , Mesocricetus , Interferência de RNA , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/uso terapêutico , SARS-CoV-2/genética
11.
bioRxiv ; 2022 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-35441162

RESUMO

Expanding the arsenal of prophylactic approaches against SARS-CoV-2 is of utmost importance, specifically those strategies that are resistant to antigenic drift in Spike. Here, we conducted a screen with over 16,000 RNAi triggers against the SARS-CoV-2 genome using a massively parallel assay to identify hyper-potent siRNAs. We selected 10 candidates for in vitro validation and found five siRNAs that exhibited hyper-potent activity with IC50<20pM and strong neutralisation in live virus experiments. We further enhanced the activity by combinatorial pairing of the siRNA candidates to develop siRNA cocktails and found that these cocktails are active against multiple types of variants of concern (VOC). We examined over 2,000 possible mutations to the siRNA target sites using saturation mutagenesis and identified broad protection against future variants. Finally, we demonstrated that intranasal administration of the siRNA cocktail effectively attenuates clinical signs and viral measures of disease in the Syrian hamster model. Our results pave the way to development of an additional layer of antiviral prophylaxis that is orthogonal to vaccines and monoclonal antibodies.

12.
Front Pharmacol ; 12: 631584, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33967767

RESUMO

Real-world healthcare data hold the potential to identify therapeutic solutions for progressive diseases by efficiently pinpointing safe and efficacious repurposing drug candidates. This approach circumvents key early clinical development challenges, particularly relevant for neurological diseases, concordant with the vision of the 21st Century Cures Act. However, to-date, these data have been utilized mainly for confirmatory purposes rather than as drug discovery engines. Here, we demonstrate the usefulness of real-world data in identifying drug repurposing candidates for disease-modifying effects, specifically candidate marketed drugs that exhibit beneficial effects on Parkinson's disease (PD) progression. We performed an observational study in cohorts of ascertained PD patients extracted from two large medical databases, Explorys SuperMart (N = 88,867) and IBM MarketScan Research Databases (N = 106,395); and applied two conceptually different, well-established causal inference methods to estimate the effect of hundreds of drugs on delaying dementia onset as a proxy for slowing PD progression. Using this approach, we identified two drugs that manifested significant beneficial effects on PD progression in both datasets: rasagiline, narrowly indicated for PD motor symptoms; and zolpidem, a psycholeptic. Each confers its effects through distinct mechanisms, which we explored via a comparison of estimated effects within the drug classification ontology. We conclude that analysis of observational healthcare data, emulating otherwise costly, large, and lengthy clinical trials, can highlight promising repurposing candidates, to be validated in prospective registration trials, beneficial against common, late-onset progressive diseases for which disease-modifying therapeutic solutions are scarce.

13.
Alzheimers Dement ; 6(6): 475-81, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-21044777

RESUMO

This article proposes the establishment of a United States-Israel Longitudinal Database for Healthy Aging and Preclinical Dementia as a prototype model for the eventual creation of an international database. It is envisioned that such a comprehensive international database, as a shared research resource, will provide the foundation for a systems approach to solve the dual public health problems of: (1) Early detection of individuals at an elevated risk of developing Alzheimer's disease, and (2) Developing interventions to delay onset of, or prevent, chronic brain disorders later in life.


Assuntos
Envelhecimento/fisiologia , Doença de Alzheimer/epidemiologia , Doença de Alzheimer/prevenção & controle , Bases de Dados como Assunto/organização & administração , Bases de Dados como Assunto/tendências , Bases de Dados Factuais/tendências , Cooperação Internacional , Sistema de Registros , Idoso , Idoso de 80 Anos ou mais , Doença de Alzheimer/economia , Bases de Dados como Assunto/economia , Bases de Dados Factuais/economia , Bases de Dados Factuais/normas , Estudos de Viabilidade , Feminino , Humanos , Israel/epidemiologia , Estudos Longitudinais/economia , Estudos Longitudinais/métodos , Estudos Longitudinais/normas , Masculino , Entrevista Psiquiátrica Padronizada , Estados Unidos/epidemiologia
14.
Cells ; 9(10)2020 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-33036387

RESUMO

Non-alcoholic fatty liver disease (NAFLD) and non-alcoholic steatohepatitis (NASH) are emerging worldwide epidemics, projected to become the leading cause of liver transplants. The strongest genetic risk factor for NAFLD/NASH susceptibility and progression is a single-nucleotide polymorphism (SNP) in the patatin-like phospholipase domain-containing 3 gene (PNPLA3), rs738409, encoding the missense mutation I148M. This aminoacidic substitution interferes with the normal remodeling of lipid droplets in hepatocytes. It is also thought to play a key role in promoting liver fibrosis by inhibiting the release of retinol from hepatic stellate cells. Reducing PNPLA3 levels in individuals homozygous for 148M may be an effective treatment for the entire spectrum of NAFLD, based on gene dosage analysis in the human population, as well as the protective effect of another naturally occurring SNP (rs2294918) in PNPLA3 which, when co-inherited, reduces PNPLA3 mRNA levels to 50% and counteracts disease risk. By screening a clinical compound library targeting specific signaling pathways active in primary human hepatocytes, we identified momelotinib, a drug evaluated in clinical trials to treat myelofibrosis, as a potent down-regulator of PNPLA3 expression, across all genotypes. We found that momelotinib treatment yielded >80% reduction in PNPLA3 mRNA in human primary hepatocytes and stellate cells, as well as in vivo via acute and chronic treatment of WT mice. Using a human multilineage 3D spheroid model of NASH homozygous for the PNPLA3 mutant protein, we additionally show that it decreases PNPLA3 mRNA as well as intracellular lipid content. Furthermore, we show that the effects on PNPLA3 coincide with changes in chromatin accessibility within regulatory regions of the PNPLA3 locus, consistent with inhibition occurring at the level of transcription. In addition to its primary reported targets, the JAK kinases, momelotinib inhibits several non-JAK kinases, including ACVR1. Using a combination of targeted siRNA knockdowns and signaling pathway perturbations, we show that momelotinib reduces the expression of the PNPLA3 gene largely through the inhibition of BMP signaling rather than the JAK/STAT pathway. Overall, our work identified momelotinib as a potential NASH therapeutic and uncovered previously unrecognized connections between signaling pathways and PNPLA3. These pathways may be exploited by drug modalities to "tune down" the level of gene expression, and therefore offer a potential therapeutic benefit to a high at-risk subset of NAFLD/NASH patients.


Assuntos
Hepatopatia Gordurosa não Alcoólica/genética , Fosfolipases A2 Independentes de Cálcio/metabolismo , Animais , Humanos , Masculino , Camundongos , Transdução de Sinais , Transfecção
16.
Genet Med ; 10(10): 720-9, 2008 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-18813134

RESUMO

PURPOSE: To evaluate systematically in real clinical settings whether functional genetic variations in drug metabolizing enzymes influence optimized doses, efficacy, and safety of antipsychotic medications. METHODS: DNA was collected from 750 patients with chronic schizophrenia treated with five antipsychotic drugs (olanzapine, quetiapine, risperidone, ziprasidone, and perphenazine) as part of the Clinical Antipsychotic Trials of Intervention Effectiveness study. Doses for each of the medicines were optimized to 1, 2, 3, or 4x units in identically appearing capsules in a double-blind design. We analyzed 25 known functional genetic variants in the major and minor metabolizing enzymes for each medication. These variants were tested for association with optimized dose and other relevant clinical outcomes. RESULTS: None of the tested variants showed a nominally significant main effect in association with any of the tested phenotypes in European-Americans, African-Americans, or all patients. Even after accounting for potential covariates, no genetic variant was found to be associated with dosing, efficacy, overall tolerability, or tardive dyskinesia. CONCLUSION: There are no strong associations between common functional genetic variants in drug metabolizing enzymes and dosing, safety, or efficacy of leading antipsychotics, strongly suggesting merely modest effects on the use of these medicines in most patients in typical clinical settings.


Assuntos
Antipsicóticos/metabolismo , Antipsicóticos/uso terapêutico , Ensaios Clínicos como Assunto , Variação Genética , Esquizofrenia/tratamento farmacológico , Adulto , Antipsicóticos/efeitos adversos , Método Duplo-Cego , Feminino , Humanos , Masculino , Pessoa de Meia-Idade
17.
Mol Neurodegener ; 13(1): 25, 2018 05 21.
Artigo em Inglês | MEDLINE | ID: mdl-29783994

RESUMO

BACKGROUND: Huntington Disease (HD) is an incurable autosomal dominant neurodegenerative disorder driven by an expansion repeat giving rise to the mutant huntingtin protein (mHtt), which is known to disrupt a multitude of transcriptional pathways. Pridopidine, a small molecule in development for treatment of HD, has been shown to improve motor symptoms in HD patients. In HD animal models, pridopidine exerts neuroprotective effects and improves behavioral and motor functions. Pridopidine binds primarily to the sigma-1 receptor, (IC50 ~ 100 nM), which mediates its neuroprotective properties, such as rescue of spine density and aberrant calcium signaling in HD neuronal cultures. Pridopidine enhances brain-derived neurotrophic factor (BDNF) secretion, which is blocked by putative sigma-1 receptor antagonist NE-100, and was shown to upregulate transcription of genes in the BDNF, glucocorticoid receptor (GR), and dopamine D1 receptor (D1R) pathways in the rat striatum. The impact of different doses of pridopidine on gene expression and transcript splicing in HD across relevant brain regions was explored, utilizing the YAC128 HD mouse model, which carries the entire human mHtt gene containing 128 CAG repeats. METHODS: RNAseq was analyzed from striatum, cortex, and hippocampus of wild-type and YAC128 mice treated with vehicle, 10 mg/kg or 30 mg/kg pridopidine from the presymptomatic stage (1.5 months of age) until 11.5 months of age in which mice exhibit progressive disease phenotypes. RESULTS: The most pronounced transcriptional effect of pridopidine at both doses was observed in the striatum with minimal effects in other regions. In addition, for the first time pridopidine was found to have a dose-dependent impact on alternative exon and junction usage, a regulatory mechanism known to be impaired in HD. In the striatum of YAC128 HD mice, pridopidine treatment initiation prior to symptomatic manifestation rescues the impaired expression of the BDNF, GR, D1R and cAMP pathways. CONCLUSIONS: Pridopidine has broad effects on restoring transcriptomic disturbances in the striatum, particularly involving synaptic transmission and activating neuroprotective pathways that are disturbed in HD. Benefits of treatment initiation at early disease stages track with trends observed in the clinic.


Assuntos
Expressão Gênica/efeitos dos fármacos , Doença de Huntington , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Piperidinas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Perfilação da Expressão Gênica , Humanos , Camundongos , Camundongos Transgênicos , Transmissão Sináptica/efeitos dos fármacos
18.
Genet Med ; 9(12): 826-35, 2007 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18091432

RESUMO

PURPOSE: Cytochrome P450 (CYP450) enzymes metabolize selective serotonin reuptake inhibitor (SSRI) drugs used in treatment of depression. Variants in these genes may impact treatment efficacy and tolerability. The purpose of this study was 2-fold: to systematically review the literature for evidence supporting CYP450 genotyping to guide SSRI treatment for major depression, and, where evidence is inadequate, to suggest future research. METHODS: We searched MEDLINE(R) and other databases for studies addressing five key questions suggested by the Evaluation of Genomic Applications in Practice and Prevention Working Group. Eligibility criteria were defined, and studies were reviewed independently by paired researchers. A conceptual model was developed to guide future research. RESULTS: Review of 1200 abstracts led to the final inclusion of 37 articles. The evidence indicates relatively high analytic sensitivity and specificity of tests detecting a subset of polymorphisms of CYP2D6, 2C19, 2C8, 2C9, and 1A1. We found marginal evidence regarding a clinical association between CYP450 variants and SSRI metabolism, efficacy, and tolerability in the treatment of depression. CONCLUSIONS: Current evidence does not support the use of CYP450 genotyping to guide SSRI treatment of patients with depression. Studies are proposed that will effectively guide decision-making in the area of CYP450 testing in depression, and genetic testing more generally.


Assuntos
Sistema Enzimático do Citocromo P-450/genética , Transtorno Depressivo/tratamento farmacológico , Testes Genéticos , Polimorfismo Genético , Inibidores Seletivos de Recaptação de Serotonina/uso terapêutico , Transtorno Depressivo/genética , Medicina Baseada em Evidências , Variação Genética , Genótipo , Humanos , MEDLINE , Reprodutibilidade dos Testes
19.
Prog Neurobiol ; 152: 114-130, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-26952809

RESUMO

Multiple sclerosis (MS) is a chronic, progressive, disabling disorder characterized by immune-mediated demyelination, inflammation, and neurodegenerative tissue damage in the central nervous system (CNS), associated with frequent exacerbations and remissions of neurologic symptoms and eventual permanent neurologic disability. While there are several MS therapies that are successful in reducing MS relapses, none have been effective in treating all patients. The specific response of an individual patient to any one of the MS therapies remains largely unpredictable, and physicians and patients are forced to use a trial and error approach when deciding on treatment regimens. A priori markers to predict the optimal benefit-to-risk profile of an individual MS patient would greatly facilitate the decision-making process, thereby helping the patient receive the most optimal treatment early on in the disease process. Pharmacogenomic methods evaluate how a person's genetic and genomic makeup affects their response to therapeutics. This review focuses on how pharmacogenomics studies are being used to identify biologically relevant differences in MS treatments and provide characterization of the predictive clinical response patterns. As pharmacogenomics research is dependent on the availability of longitudinal clinical research, studies concerning glatiramer acetate and the interferon beta products which have the majority of published long term data to date are described in detail. These studies have provided considerable insight in the prognostic markers associated with MS disease and potential predictive markers of safety and beneficial response.


Assuntos
Pesquisa Biomédica/tendências , Esclerose Múltipla/tratamento farmacológico , Esclerose Múltipla/genética , Farmacogenética/tendências , Testes Farmacogenômicos/tendências , Medicina de Precisão/tendências , Medicina Baseada em Evidências/tendências , Humanos , Resultado do Tratamento
20.
Genome Med ; 9(1): 50, 2017 05 31.
Artigo em Inglês | MEDLINE | ID: mdl-28569182

RESUMO

BACKGROUND: Copaxone is an efficacious and safe therapy that has demonstrated clinical benefit for over two decades in patients with relapsing forms of multiple sclerosis (MS). On an individual level, patients show variability in their response to Copaxone, with some achieving significantly higher response levels. The involvement of genes (e.g., HLA-DRB1*1501) with high inter-individual variability in Copaxone's mechanism of action (MoA) suggests the potential contribution of genetics to treatment response. This study aimed to identify genetic variants associated with Copaxone response in patient cohorts from late-phase clinical trials. METHODS: Single nucleotide polymorphisms (SNPs) associated with high and low levels of response to Copaxone were identified using genome-wide SNP data in a discovery cohort of 580 patients from two phase III clinical trials of Copaxone. Multivariable Bayesian modeling on the resulting SNPs in an expanded discovery cohort with 1171 patients identified a multi-SNP signature of Copaxone response. This signature was examined in 941 Copaxone-treated MS patients from seven independent late-phase trials of Copaxone and assessed for specificity to Copaxone in 310 Avonex-treated and 311 placebo-treated patients, also from late-phase trials. RESULTS: A four-SNP signature consisting of rs80191572 (in UVRAG), rs28724893 (in HLA-DQB2), rs1789084 (in MBP), and rs139890339 (in ZAK(CDCA7)) was identified as significantly associated with Copaxone response. Copaxone-treated signature-positive patients had a greater reduction in annualized relapse rate (ARR) compared to signature-negative patients in both discovery and independent cohorts, an effect not observed in Avonex-treated patients. Additionally, signature-positive placebo-treated cohorts did not show a reduction in ARR, demonstrating the predictive as opposed to prognostic nature of the signature. A 10% subset of patients, delineated by the signature, showed marked improvements across multiple clinical parameters, including ARR, MRI measures, and higher proportion with no evidence of disease activity (NEDA). CONCLUSIONS: This study is the largest pharmacogenetic study in MS reported to date. Gene regions underlying the four-SNP signature have been linked with pathways associated with either Copaxone's MoA or the pathophysiology of MS. The pronounced association of the four-SNP signature with clinical improvements in a ~10% subset of the MS patient population demonstrates the complex interplay of immune mechanisms and the individualized nature of response to Copaxone.


Assuntos
Acetato de Glatiramer/uso terapêutico , Esclerose Múltipla/tratamento farmacológico , Variantes Farmacogenômicos , Polimorfismo de Nucleotídeo Único , Adulto , Teorema de Bayes , Ensaios Clínicos Fase III como Assunto , Ensaios Clínicos Fase IV como Assunto , Feminino , Acetato de Glatiramer/genética , Humanos , Masculino , Pessoa de Meia-Idade , Modelos Genéticos , Modelos Estatísticos , Esclerose Múltipla/genética , Medicina de Precisão , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA