Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 119
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Appl Environ Microbiol ; 90(3): e0002424, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38349146

RESUMO

Molecular sequence data have transformed research on cryptogams (e.g., lichens, microalgae, fungi, and symbionts thereof) but methods are still strongly hampered by the small size and intermingled growth of the target organisms, poor cultivability and detrimental effects of their secondary metabolites. Here, we aim to showcase examples on which a modified direct PCR approach for diverse aspects of molecular work on environmental samples concerning biocrusts, biofilms, and cryptogams gives new options for the research community. Unlike traditional approaches, this methodology only requires biomass equivalent to colonies and fragments of 0.2 mm in diameter, which can be picked directly from the environmental sample, and includes a quick DNA lysis followed by a standardized PCR cycle that allows co-cycling of various organisms/target regions in the same run. We demonstrate that this modified method can (i) amplify the most widely used taxonomic gene regions and those used for applied and environmental sciences from single colonies and filaments of free-living cyanobacteria, bryophytes, fungi, and lichens, including their mycobionts, chlorobionts, and cyanobionts from both isolates and in situ material during co-cycling; (ii) act as a tool to confirm that the dominant lichen photobiont was isolated from the original sample; and (iii) optionally remove inhibitory secondary lichen substances. Our results represent examples which highlight the method's potential for future applications covering mycology, phycology, biocrusts, and lichenology, in particular.IMPORTANCECyanobacteria, green algae, lichens, and other cryptogams play crucial roles in complex microbial systems such as biological soil crusts of arid biomes or biofilms in caves. Molecular investigations on environmental samples or isolates of these microorganisms are often hampered by their dense aggregation, small size, or metabolism products which complicate DNA extraction and subsequent PCRs. Our work presents various examples of how a direct DNA extraction and PCR method relying on low biomass inserts can overcome these common problems and discusses additional applications of the workflow including adaptations.


Assuntos
Ecossistema , Líquens , Biomassa , Fungos/genética , Líquens/genética , Reação em Cadeia da Polimerase , DNA
2.
New Phytol ; 238(4): 1362-1378, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36710517

RESUMO

Exposing their vegetative bodies to the light, lichens are outstanding amongst other fungal symbioses. Not requiring a pre-established host, 'lichenized fungi' build an entirely new structure together with microbial photosynthetic partners that neither can form alone. The signals involved in the transition of a fungus and a compatible photosynthetic partner from a free-living to a symbiotic state culminating in thallus formation, termed 'lichenization', and in the maintenance of the symbiosis, are poorly understood. Here, we synthesise the puzzle pieces of the scarce knowledge available into an updated concept of signalling involved in lichenization, comprising five main stages: (1) the 'pre-contact stage', (2) the 'contact stage', (3) 'envelopment' of algal cells by the fungus, (4) their 'incorporation' into a pre-thallus and (5) 'differentiation' into a complex thallus. Considering the involvement of extracellularly released metabolites in each phase, we propose that compounds such as fungal lectins and algal cyclic peptides elicit early contact between the symbionts-to-be, whereas phytohormone signalling, antioxidant protection and carbon exchange through sugars and sugar alcohols are of continued importance throughout all stages. In the fully formed lichen thallus, secondary lichen metabolites and mineral nutrition are suggested to stabilize the functionalities of the thallus, including the associated microbiota.


Assuntos
Líquens , Líquens/microbiologia , Simbiose , Fotossíntese
3.
Microb Ecol ; 81(4): 965-976, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33404820

RESUMO

Lichens host highly diverse microbial communities, with bacteria being one of the most explored groups in terms of their diversity and functioning. These bacteria could partly originate from symbiotic propagules developed by many lichens and, perhaps more commonly and depending on environmental conditions, from different sources of the surroundings. Using the narrowly distributed species Peltigera frigida as an object of study, we propose that bacterial communities in these lichens are different from those in their subjacent substrates, even if some taxa might be shared. Ten terricolous P. frigida lichens and their substrates were sampled from forested sites in the Coyhaique National Reserve, located in an understudied region in Chile. The mycobiont identity was confirmed using partial 28S and ITS sequences. Besides, 16S fragments revealed that mycobionts were associated with the same cyanobacterial haplotype. From both lichens and substrates, Illumina 16S amplicon sequencing was performed using primers that exclude cyanobacteria. In lichens, Proteobacteria was the most abundant phylum (37%), whereas soil substrates were dominated by Acidobacteriota (39%). At lower taxonomic levels, several bacterial groups differed in relative abundance among P. frigida lichens and their substrates, some of them being highly abundant in lichens but almost absent in substrates, like Sphingomonas (8% vs 0.2%), and others enriched in lichens, as an unassigned genus of Chitinophagaceae (10% vs 2%). These results reinforce the idea that lichens would carry some components of their microbiome when propagating, but they also could acquire part of their bacterial community from the substrates.


Assuntos
Ascomicetos , Cianobactérias , Líquens , Microbiota
4.
Symbiosis ; 82(1): 123-131, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33536700

RESUMO

Lichenized fungi usually develop complex, stratified morphologies through an intricately balanced living together with their algal partners, but several species are known to form only more or less loose associations with algae. These borderline lichens are still little explored although they could inform us about early stages of lichen evolution. We studied the association of the extremely halotolerant fungus Hortaea werneckii with the alga Dunaliella atacamensis, discovered in a cave in the Atacama Desert (Chile), and with D. salina, common inhabitant of saltern brines. D. atacamensis forms small colonies, in which cells of H. werneckii can be frequently observed, while such interaction has not been observed with D. salina. As symbiotic interactions between Dunaliella and Hortaea have not been reported, we performed a series of co-cultivation experiments to inspect whether these species could interact and develop more distinct lichen-like symbiotic structures. We set up co-cultures between axenic strains of Hortaea werneckii (isolated both from Mediterranean salterns and from the Atacama cave) and isolates of D. atacamensis (from the Atacama cave) and D. salina (isolated from Mediterranean salterns). Although we used different growth media and cultivation approaches, bright field and SEM microscopy analyses did not indicate any mutual effects in these experiments. We discuss the implications for fungal algal interactions along the transition from algal exploiters to lichen symbioses.

5.
New Phytol ; 241(3): 972-973, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38031487
6.
New Phytol ; 241(5): 1888-1890, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38192071
7.
J Proteome Res ; 16(6): 2160-2173, 2017 06 02.
Artigo em Inglês | MEDLINE | ID: mdl-28290203

RESUMO

Lichens are recognized by macroscopic structures formed by a heterotrophic fungus, the mycobiont, which hosts internal autotrophic photosynthetic algal and/or cyanobacterial partners, referred to as the photobiont. We analyzed the structure and functionality of the entire lung lichen Lobaria pulmonaria L. Hoffm. collected from two different sites by state-of-the-art metaproteomics. In addition to the green algae and the ascomycetous fungus, a lichenicolous fungus as well as a complex prokaryotic community (different from the cyanobacteria) was found, the latter dominated by methanotrophic Rhizobiales. Various partner-specific proteins could be assigned to the different lichen symbionts, for example, fungal proteins involved in vesicle transport, algal proteins functioning in photosynthesis, cyanobacterial nitrogenase and GOGAT involved in nitrogen fixation, and bacterial enzymes responsible for methanol/C1-compound metabolism as well as CO-detoxification. Structural and functional information on proteins expressed by the lichen community complemented and extended our recent symbiosis model depicting the functional multiplayer network of single holobiont partners.1 Our new metaproteome analysis strongly supports the hypothesis (i) that interactions within the self-supporting association are multifaceted and (ii) that the strategy of functional diversification within the single lichen partners may support the longevity of L. pulmonaria under certain ecological conditions.


Assuntos
Ascomicetos , Clorófitas , Cianobactérias , Líquens , Simbiose , Biodiversidade , Metabolômica , Interações Microbianas , Proteômica , Pulmonaria
8.
New Phytol ; 234(5): 1541-1543, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35478327

Assuntos
Líquens
9.
Mol Ecol ; 26(18): 4811-4830, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28771869

RESUMO

As self-supporting and long-living symbiotic structures, lichens provide a habitat for many other organisms beside the traditionally considered lichen symbionts-the myco- and the photobionts. The lichen-inhabiting fungi either develop diagnostic phenotypes or occur asymptomatically. Because the degree of specificity towards the lichen host is poorly known, we studied the diversity of these fungi among neighbouring lichens on rocks in an alpine habitat. Using a sequencing metabarcoding approach, we show that lichen mycobiomes clearly reflect the overlap of multiple ecological sets of taxa, which differ in their trophic association with lichen thalli. The lack of specificity to the lichen mycobiome is further supported by the lack of community structure observed using clustering and ordination methods. The communities encountered across samples largely result from the subsampling of a shared species pool, in which we identify three major ecological components: (i) a generalist environmental pool, (ii) a lichenicolous/endolichenic pool and (iii) a pool of transient species. These taxa majorly belong to the fungal classes Dothideomycetes, Eurotiomycetes and Tremellomycetes with close relatives in adjacent ecological niches. We found no significant evidence that the phenotypically recognized lichenicolous fungi influence the occurrence of the other asymptomatic fungi in the host thalli. We claim that lichens work as suboptimal habitats or as a complex spore and mycelium bank, which modulate and allow the regeneration of local fungal communities. By performing an approach that minimizes ambiguities in the taxonomic assignments of fungi, we present how lichen mycobiomes are also suitable targets for improving bioinformatic analyses of fungal metabarcoding.


Assuntos
Ascomicetos/classificação , Basidiomycota/classificação , Código de Barras de DNA Taxonômico , Líquens/microbiologia , Micobioma , Áustria , DNA Espaçador Ribossômico/genética , Filogenia , Simbiose
10.
Mol Ecol ; 26(10): 2826-2838, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28222236

RESUMO

Knowledge of bacterial community host-specificity has increased greatly in recent years. However, the intermicrobiome relationships of unrelated but spatially close organisms remain little understood. Trunks of trees covered by epiphytes represent complex habitats with a mosaic of ecological niches. In this context, we investigated the structure, diversity and interactions of microbiota associated with lichens, mosses and the bare tree bark. Comparative analysis revealed significant differences in the habitat-associated community structures. Corresponding co-occurrence analysis indicated that the lichen microbial network is less complex and less densely interconnected than the moss- and bark-associated networks. Several potential generalists and specialists were identified for the selected habitats. Generalists belonged mainly to Proteobacteria, with Sphingomonas as the most abundant genus. The generalists comprise microorganisms with generally beneficial features, such as nitrogen fixation or other supporting functions, according to a metagenomic analysis. We argue that beneficial strains shared among hosts contribute to ecological stability of the host biocoenoses.


Assuntos
Bactérias/classificação , Briófitas/microbiologia , Líquens/microbiologia , Microbiota , Casca de Planta/microbiologia , Ecologia , Ecossistema , Árvores
11.
Molecules ; 22(5)2017 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-28513562

RESUMO

Microscopic and molecular studies suggest that lichen symbioses contain a plethora of associated fungi. These are potential producers of novel bioactive compounds, but strains isolated on standard media usually represent only a minor subset of these fungi. By using various in vitro growth conditions we are able to modulate and extend the fraction of culturable lichen-associated fungi. We observed that the presence of iron, glucose, magnesium and potassium in growth media is essential for the successful isolation of members from different taxonomic groups. According to sequence data, most isolates besides the lichen mycobionts belong to the classes Dothideomycetes and Eurotiomycetes. With our approach we can further explore the hidden fungal diversity in lichens to assist in the search of novel compounds.


Assuntos
Biodiversidade , Meios de Cultura/química , Líquens/crescimento & desenvolvimento , Líquens/isolamento & purificação , DNA Fúngico/análise , Glucose/farmacologia , Ferro/farmacologia , Líquens/classificação , Magnésio/farmacologia , Filogenia , Potássio/farmacologia , Análise de Sequência de DNA , Simbiose
12.
Environ Microbiol ; 18(5): 1428-39, 2016 05.
Artigo em Inglês | MEDLINE | ID: mdl-26310431

RESUMO

Lichens are obligate symbioses between fungi and green algae or cyanobacteria. Most lichens resynthesize their symbiotic thalli from propagules, but some develop within the structures of already existing lichen symbioses. Diploschistes muscorum starts as a parasite infecting the lichen Cladonia symphycarpa and gradually develops an independent Diploschistes lichen thallus. Here we studied how this process influences lichen-associated microbiomes and photobionts by sampling four transitional stages, at sites in Sweden and Germany, and characterizing their microbial communities using high-throughput 16S rRNA gene and photobiont-specific ITS rDNA sequencing, and fluorescence in situ hybridization. A gradual microbiome shift occurred during the transition, but fractions of Cladonia-associated bacteria were retained during the process of symbiotic reorganization. Consistent changes observed across sites included a notable decrease in the relative abundance of Alphaproteobacteria with a concomitant increase in Betaproteobacteria. Armatimonadia, Spartobacteria and Acidobacteria also decreased during the infection of Cladonia by Diploschistes. The lichens differed in photobiont specificity. Cladonia symphycarpa was associated with the same algal species at all sites, but Diploschistes muscorum had a flexible strategy with different photobiont combinations at each site. This symbiotic invasion system suggests that partners can be reorganized and selected for maintaining potential roles rather than depending on particular species.


Assuntos
Ascomicetos/fisiologia , Bactérias/isolamento & purificação , Líquens/microbiologia , Microbiota , Simbiose , Alphaproteobacteria/genética , Alphaproteobacteria/isolamento & purificação , Bactérias/genética , Betaproteobacteria/genética , Betaproteobacteria/isolamento & purificação , Hibridização in Situ Fluorescente , RNA Ribossômico 16S/genética
13.
J Exp Bot ; 67(4): 995-1002, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26547794

RESUMO

The importance of microbial root inhabitants for plant growth and health was recognized as early as 100 years ago. Recent insights reveal a close symbiotic relationship between plants and their associated microorganisms, and high structural and functional diversity within plant microbiomes. Plants provide microbial communities with specific habitats, which can be broadly categorized as the rhizosphere, phyllosphere, and endosphere. Plant-associated microbes interact with their host in essential functional contexts. They can stimulate germination and growth, help plants fend off disease, promote stress resistance, and influence plant fitness. Therefore, plants have to be considered as metaorganisms within which the associated microbes usually outnumber the cells belonging to the plant host. The structure of the plant microbiome is determined by biotic and abiotic factors but follows ecological rules. Metaorganisms are co-evolved species assemblages. The metabolism and morphology of plants and their microbiota are intensively connected with each other, and the interplay of both maintains the functioning and fitness of the holobiont. Our study of the current literature shows that analysis of plant microbiome data has brought about a paradigm shift in our understanding of the diverse structure and functioning of the plant microbiome with respect to the following: (i) the high interplay of bacteria, archaea, fungi, and protists; (ii) the high specificity even at cultivar level; (iii) the vertical transmission of core microbiomes; (iv) the extraordinary function of endophytes; and (v) several unexpected functions and metabolic interactions. The plant microbiome should be recognized as an additional factor in experimental botany and breeding strategies.


Assuntos
Botânica/tendências , Microbiota , Plantas/microbiologia
14.
Microb Ecol ; 72(3): 510-3, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27464604

RESUMO

Self-sustaining lichen symbioses potentially can become very old, sometimes even thousands of years in nature. In the joint structures, algal partners are sheltered between fungal structures that are externally colonized by bacterial communities. With this arrangement lichens survive long periods of drought, and lichen thalli can be revitalized even after decades of dry storage in a herbarium. To study the effects of long-term ex situ storage on viability of indigenous bacterial communities we comparatively studied herbarium-stored material of the lung lichen, Lobaria pulmonaria. We discovered that a significant fraction of the lichen-associated bacterial community survives herbarium storage of nearly 80 years, and living bacteria can still be found in even older material. As the bacteria reside in the upper surface layers of the lichen material, we argue that the extracellular polysaccharides of lichens contribute to superior life expectancy of bacteria. Deeper understanding of underlying mechanisms could provide novel possibilities for biotechnological applications.


Assuntos
Bactérias , Fenômenos Fisiológicos Bacterianos , Líquens/microbiologia , Expectativa de Vida , Ascomicetos/fisiologia , Bactérias/genética , DNA Bacteriano , DNA Ribossômico , Genes Bacterianos , Microscopia Confocal , RNA Ribossômico 16S/genética , Sobrevida , Simbiose
15.
Appl Microbiol Biotechnol ; 100(2): 583-95, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26549239

RESUMO

The search for microorganisms from novel sources and in particular microbial symbioses represents a promising approach in biotechnology. In this context, lichens have increasingly become a subject of research in microbial biotechnology, particularly after the recognition that a diverse community of bacteria other than cyanobacteria is an additional partner to the traditionally recognized algae-fungus mutualism. Here, we review recent studies using culture-dependent as well as culture-independent approaches showing that lichens can harbor diverse bacterial families known for the production of compounds of biotechnological interest and that several microorganisms isolated from lichens, in particular Actinobacteria and Cyanobacteria, can produce a number of bioactive compounds, many of them with biotechnological potential.


Assuntos
Actinobacteria/isolamento & purificação , Cianobactérias/isolamento & purificação , Líquens/microbiologia , Actinobacteria/genética , Actinobacteria/metabolismo , Biotecnologia , Cianobactérias/genética , Cianobactérias/metabolismo , Fungos/genética , Fungos/metabolismo , Líquens/genética , Consórcios Microbianos , Simbiose
16.
Planta Med ; 82(13): 1143-52, 2016 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-27220082

RESUMO

This review presents the state of knowledge on the medicinal potential of bacteria associated with lichens. In fact, besides the classical symbiotic partners (photobiont and mycobiont) forming the lichen thallus, associated bacteria have been recently described as a third partner. Various studies demonstrated the diversity of these communities with a predominance of Alphaproteobacteria. Bacterial groups more relevant for secondary metabolite synthesis have also been revealed. This article summarizes studies reporting the abilities of these communities to produce metabolites with relevant bioactivities. The biotechnological interest of these bacteria for drug discovery is highlighted regarding the production of compounds with therapeutic potential. Special focus is given to the synthesis of the most promising compound, uncialamycin, a potent enediyne isolated from a Streptomyces sp. associated with Cladonia uncialis.


Assuntos
Alphaproteobacteria/química , Antraquinonas/uso terapêutico , Líquens/microbiologia , Alphaproteobacteria/isolamento & purificação , Antraquinonas/síntese química , Antraquinonas/química , Antraquinonas/isolamento & purificação , Descoberta de Drogas , Streptomyces/química
17.
Clin Oral Investig ; 20(9): 2515-2528, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27020914

RESUMO

OBJECTIVES: Despite the input of microbiome research, a group of 20 bacteria continues to be the focus of periodontal diagnostics and therapy. The aim of this study was to compare three commercial kits and laboratory-developed primer pairs for effectiveness in detecting such periodontopathogens. MATERIALS AND METHODS: Fourteen bacterial mock communities, consisting of 16 randomly assembled bacterial strains, were used as reference standard for testing kits and primers. Extracted DNA from mock communities was analyzed by PCR in-house with specific primers and forwarded for analysis to the manufacturer's laboratory of each of the following kits: ParoCheck®Kit 20, micro-IDent®plus11, and Carpegen® Perio Diagnostik. RESULTS: The kits accurately detected Fusobacterium nucleatum, Prevotella intermedia/Prevotella nigrescens, Parvimonas micra, Aggregatibacter actinomycetemcomitans, Campylobacter rectus/showae, Streptococcus mitis, Streptococcus mutans, and Veillonella parvula. The in-house primers for F.nucleatum were highly specific to subtypes of the respective periopathogen. Other primers repeatedly detected oral pathogens not present in the mock communities, indicating reduced specificity. CONCLUSIONS: The commercial kits used in this study are reliable tools to support periodontal diagnostics. Whereas the detection profile of the kits is fixed at a general specificity level, the design of primers can be adjusted to differentiate between highly specific strains. In-house primers are more error-prone. Bacterial mock communities can be established as a reference standard for any similar testing. CLINICAL RELEVANCE: The tested kits render good results with selected bacterial species. Primers appear to be less useful for routine clinical diagnostics and of limited applicability in research. Basic information about the periodontopathogens identified in this study supports clinical decision-making.


Assuntos
Técnicas Bacteriológicas , DNA Bacteriano/análise , Doenças Periodontais/microbiologia , Humanos , Reação em Cadeia da Polimerase
18.
Fungal Divers ; 76: 119-142, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26877720

RESUMO

Fungi other than the lichen mycobiont frequently co-occur within lichen thalli and on the same rock in harsh environments. In these situations dark-pigmented mycelial structures are commonly observed on lichen thalli, where they persist under the same stressful conditions as their hosts. Here we used a comprehensive sampling of lichen-associated fungi from an alpine habitat to assess their phylogenetic relationships with fungi previously known from other niches. The multilocus phylogenetic analyses suggest that most of the 248 isolates belong to the Chaetothyriomycetes and Dothideomycetes, while a minor fraction represents Sordariomycetes and Leotiomycetes. As many lichens also were infected by phenotypically distinct lichenicolous fungi of diverse lineages, it remains difficult to assess whether the culture isolates represent these fungi or are from additional cryptic, extremotolerant fungi within the thalli. Some of these strains represent yet undescribed lineages within Chaethothyriomycetes and Dothideomycetes, whereas other strains belong to genera of fungi, that are known as lichen colonizers, plant and human pathogens, rock-inhabiting fungi, parasites and saprotrophs. The symbiotic structures of the lichen thalli appear to be a shared habitat of phylogenetically diverse stress-tolerant fungi, which potentially benefit from the lichen niche in otherwise hostile habitats.

19.
Environ Microbiol ; 17(1): 239-52, 2015 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-25367329

RESUMO

Lettuce is one of the most common raw foods worldwide, but occasionally also involved in pathogen outbreaks. To understand the correlative structure of the bacterial community as a network, we studied root microbiota of eight ancient and modern Lactuca sativa cultivars and the wild ancestor Lactuca serriola by pyrosequencing of 16S rRNA gene amplicon libraries. The lettuce microbiota was dominated by Proteobacteria and Bacteriodetes, as well as abundant Chloroflexi and Actinobacteria. Cultivar specificity comprised 12.5% of the species. Diversity indices were not different between lettuce cultivar groups but higher than in L. serriola, suggesting that domestication lead to bacterial diversification in lettuce root system. Spearman correlations between operational taxonomic units (OTUs) showed that co-occurrence prevailed over co-exclusion, and complementary fluorescence in situ hybridization-confocal laser scanning microscopy (FISH-CLSM) analyses revealed that this pattern results from both potential interactions and habitat sharing. Predominant taxa, such as Pseudomonas, Flavobacterium and Sphingomonadaceae rather suggested interactions, even though these are not necessarily part of significant modules in the co-occurrence networks. Without any need for complex interactions, single organisms are able to invade into this microbial network and to colonize lettuce plants, a fact that can influence the susceptibility to pathogens. The approach to combine co-occurrence analysis and FISH-CLSM allows reliably reconstructing and interpreting microbial interaction networks.


Assuntos
Bactérias/classificação , Lactuca/microbiologia , Consórcios Microbianos , Interações Microbianas , Microbiota , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Raízes de Plantas/microbiologia
20.
New Phytol ; 227(5): 1281-1283, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32484275
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA