Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Biochim Biophys Acta ; 1842(11): 2329-2343, 2014 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-25128743

RESUMO

Insulin resistance is one of the key components of the metabolic syndrome and it eventually leads to the development of type 2 diabetes, making it one of the biggest medical problems of modern society. Nonalcoholic fatty liver disease (NAFLD) and nonalcoholic steatohepatitis (NASH) are tightly associated with insulin resistance. While it is fairly clear that insulin resistance causes hepatic steatosis, it is not known if NAFLD causes insulin resistance. Hepatic inflammation and lipid accumulation are believed to be the main drivers of hepatic insulin resistance in NAFLD. Here we give an overview of the evidence linking hepatic lipid accumulation to the development of insulin resistance, including the accumulation of triacylglycerol and lipid metabolites, such as diacylglycerol and ceramides. In particular, we discuss the role of obesity in this relation by reviewing the current evidence in terms of the reported changes in body weight and/or adipose tissue mass. We further discuss whether the activation or inhibition of inflammatory pathways, Kupffer cells and other immune cells influences the development of insulin resistance. We show that, in contrast to what is commonly believed, neither hepatic steatosis nor hepatic inflammation is sufficient to cause insulin resistance. Many studies show that obesity cannot be ignored as an underlying factor in this relationship and NAFLD is therefore less likely to be one of the main drivers of insulin resistance.

2.
Hepatology ; 57(2): 566-76, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22941955

RESUMO

UNLABELLED: Ectodomain shedding of tumor necrosis factor receptor 1 (TNFR1) provides negative feedback to the inflammatory loop induced by TNFα. As the significance of this mechanism in obesity-associated pathologies is unclear, we aimed to unravel how much TNFR1 ectodomain shedding controls the development of nonalcoholic fatty liver disease (NAFLD), as well as its role in the development of insulin resistance. We used knockin mice expressing a mutated TNFR1 ectodomain (p55(Δns)), incapable of shedding and dampen the inflammatory response. Our data show that persistent TNFα signaling through this inability of TNFR1 ectodomain shedding contributes to chronic low-grade inflammation, which is confined to the liver. In spite of this, hepatic lipid levels were not affected by the nonshedding mutation in mice fed a chow diet, nor were they worse off following 12 weeks of high-fat diet (HFD) than controls (p55(+/+)) fed an HFD. We detected inflammatory infiltrates, hepatocellular necrosis, and apoptosis in livers of p55(Δns/Δns) mice fed an HFD, suggesting advanced progression of NAFLD toward nonalcoholic steatohepatitis (NASH). Indeed, fibrosis was present in p55(Δns/Δns) mice, but absent in wildtype mice, confirming that the p55(Δns/Δns) mice had a more severe NASH phenotype. Despite low-grade hepatic inflammation, insulin resistance was not observed in p55(Δns/Δns) mice fed a chow diet, and HFD-induced insulin resistance was no worse in p55(Δns/Δns) mice than p55(+/+) mice. CONCLUSION: TNFR1 ectodomain shedding is not an essential feedback mechanism in preventing the development of hepatic steatosis or insulin resistance. It is, however, pivotal in attenuating the progression from "simple steatosis" towards a more serious phenotype with many NASH features. Targeting TNFR1 could therefore be beneficial in attenuating NASH.


Assuntos
Fígado Gorduroso/etiologia , Receptores Tipo I de Fatores de Necrose Tumoral/genética , Animais , Dieta Hiperlipídica , Feminino , Inflamação/etiologia , Resistência à Insulina/genética , Fígado/patologia , Masculino , Camundongos , Mutação , Hepatopatia Gordurosa não Alcoólica
3.
Sci Rep ; 13(1): 5332, 2023 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-37005488

RESUMO

Huntington's disease (HD) is caused by a cytosine adenine guanine-repeat expansion in the huntingtin gene. This results in the production of toxic mutant huntingtin protein (mHTT), which has an elongated polyglutamine (polyQ) stretch near the protein's N-terminal end. The pharmacological lowering of mHTT expression in the brain targets the underlying driver of HD and is one of the principal therapeutic strategies being pursued to slow or stop disease progression. This report describes the characterisation and validation of an assay designed to quantify mHTT in the cerebrospinal fluid of individuals with HD, for use in registrational clinical trials. The assay was optimised, and its performance was characterised with recombinant huntingtin protein (HTT) varying in overall and polyQ-repeat length. The assay was successfully validated by two independent laboratories in regulated bioanalytical environments and showed a steep signal increase as the polyQ stretch of recombinant HTTs pivoted from wild-type to mutant protein forms. Linear mixed effects modelling confirmed highly parallel concentration-response curves for HTTs, with only a minor impact of individual slopes of the concentration-response for different HTTs (typically < 5% of the overall slope). This implies an equivalent quantitative signal behaviour for HTTs with differing polyQ-repeat lengths. The reported method may be a reliable biomarker tool with relevance across the spectrum of HD mutations, which can facilitate the clinical development of HTT-lowering therapies in HD.


Assuntos
Doença de Huntington , Humanos , Proteína Huntingtina/genética , Proteína Huntingtina/metabolismo , Proteínas Mutantes , Doença de Huntington/tratamento farmacológico , Doença de Huntington/genética , Doença de Huntington/líquido cefalorraquidiano , Proteínas Recombinantes/genética , Biomarcadores
4.
Mol Metab ; 54: 101349, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34626855

RESUMO

OBJECTIVE: Obesity-related chronic inflammation plays an important role in the development of Metabolic Associated Fatty Liver Disease (MAFLD). Although the contribution of the pro-inflammatory NF-κB signaling pathway to the progression from simple steatosis to non-alcoholic steatohepatitis (NASH) is well-established, its role as an initiator of hepatic steatosis and the underlying mechanism remains unclear. Here, we investigated the hypothesis that the hepatocytic NF-κB signaling pathway acts as a metabolic regulator, thereby promoting hepatic steatosis development. METHODS: A murine model expressing a constitutively active form of IKKß in hepatocytes (Hep-IKKßca) was used to activate hepatocyte NF-κB. In addition, IKKßca was also expressed in hepatocyte A20-deficient mice (IKKßca;A20LKO). A20 is an NF-κB-target gene that inhibits the activation of the NF-κB signaling pathway upstream of IKKß. These mouse models were fed a sucrose-rich diet for 8 weeks. Hepatic lipid levels were measured and using [1-13C]-acetate de novo lipogenesis and cholesterol synthesis rate were determined. Gene expression analyses and immunoblotting were used to study the lipogenesis and cholesterol synthesis pathways. RESULTS: Hepatocytic NF-κB activation by expressing IKKßca in hepatocytes resulted in hepatic steatosis without inflammation. Ablation of hepatocyte A20 in Hep-IKKßca mice (IKKßca;A20LKO mice) exacerbated hepatic steatosis, characterized by macrovesicular accumulation of triglycerides and cholesterol, and increased plasma cholesterol levels. Both De novo lipogenesis (DNL) and cholesterol synthesis were found elevated in IKKßca;A20LKO mice. Phosphorylation of AMP-activated kinase (AMPK) - a suppressor in lipogenesis and cholesterol synthesis - was decreased in IKKßca;A20LKO mice. This was paralleled by elevated protein levels of hydroxymethylglutaryl-CoA synthase 1 (HMGCS1) and reduced phosphorylation of HMG-CoA reductase (HMGCR) both key enzymes in the cholesterol synthesis pathway. Whereas inflammation was not observed in young IKKßca;A20LKO mice sustained hepatic NF-κB activation resulted in liver inflammation, together with elevated hepatic and plasma cholesterol levels in middle-aged mice. CONCLUSIONS: The hepatocytic IKK:NF-κB axis is a metabolic regulator by controlling DNL and cholesterol synthesis, independent of its central role in inflammation. The IKK:NF-κB axis controls the phosphorylation levels of AMPK and HMGCR and the protein levels of HMGCS1. Chronic IKK-mediated NF-κB activation may contribute to the initiation of hepatic steatosis and cardiovascular disease risk in MAFLD patients.


Assuntos
Colesterol/biossíntese , Quinase I-kappa B/metabolismo , Lipogênese , NF-kappa B/metabolismo , Hepatopatia Gordurosa não Alcoólica/metabolismo , Animais , Modelos Animais de Doenças , Hepatócitos/metabolismo , Camundongos , Camundongos Congênicos , Camundongos Transgênicos
5.
J Diabetes Res ; 2015: 956854, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25815343

RESUMO

Chronic inflammation is considered a causal risk factor predisposing to insulin resistance. However, evidence is accumulating that inflammation confined to the liver may not be causal to metabolic dysfunction. To investigate this, we assessed if hepatic inflammation explains the predisposition towards insulin resistance in low-density lipoprotein receptor knock-out (Ldlr (-/-)) mice. For this, wild type (WT) and Ldlr (-/-) mice were fed a chow diet, a high fat (HF) diet, or a high fat, high cholesterol (HFC) diet for 2 weeks. Plasma lipid levels were elevated in chow-fed Ldlr (-/-) mice compared to WT mice. Although short-term HF or HFC feeding did not result in body weight gain and adipose tissue inflammation, dyslipidemia was worsened in Ldlr (-/-) mice compared to WT mice. In addition, dyslipidemic HF-fed Ldlr (-/-) mice had a higher hepatic glucose production rate than HF-fed WT mice, while peripheral insulin resistance was unaffected. This suggests that HF-fed Ldlr (-/-) mice suffered from hepatic insulin resistance. While HFC-fed Ldlr (-/-) mice displayed the anticipated increased hepatic inflammation, this did neither exacerbate systemic nor hepatic insulin resistance. Therefore, our results show that hepatic insulin resistance is unrelated to cholesterol-induced hepatic inflammation in Ldlr (-/-) mice, indicating that hepatic inflammation may not contribute to metabolic dysfunction per se.


Assuntos
Colesterol/efeitos adversos , Inflamação/metabolismo , Resistência à Insulina/genética , Fígado/metabolismo , Receptores de LDL/genética , Tecido Adiposo/metabolismo , Animais , Glicemia/metabolismo , Colesterol/sangue , Dislipidemias/genética , Dislipidemias/metabolismo , Feminino , Cromatografia Gasosa-Espectrometria de Massas , Técnica Clamp de Glucose , Teste de Tolerância a Glucose , Lipídeos/química , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Receptores de LDL/metabolismo , Fatores de Risco , Triglicerídeos/metabolismo
6.
Aging (Albany NY) ; 7(4): 256-68, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25979814

RESUMO

Metabolic inflammation in adipose tissue and the liver is frequently observed as a result of diet-induced obesity in human and rodent studies. Although the adipose tissue and the liver are both prone to become chronically inflamed with prolonged obesity, their individual contribution to the development of metabolic inflammation remains speculative. Thus, we aimed to elucidate the sequence of inflammatory events in adipose and hepatic tissues to determine their contribution to the development of metabolic inflammation and insulin resistance (IR) in diet-induced obesity. To confirm our hypothesis that adipose tissue (AT) inflammation is initiated prior to hepatic inflammation, C57BL/6J male mice were fed a low-fat diet (LFD; 10% kcal fat) or high-fat diet (HFD; 45% kcal fat) for either 24, 40 or 52 weeks. Lipid accumulation and inflammation was measured in AT and liver. Glucose tolerance was assessed and plasma levels of glucose, insulin, leptin and adiponectin were measured at various time points throughout the study. With HFD, C57BL/6j mice developed a progressive obese phenotype, accompanied by IR at 24 and 40 weeks of HFD, but IR was attenuated after 52 weeks of HFD. AT inflammation was present after 24 weeks of HFD, as indicated by the increased presence of crown-like structures and up-regulation of pro-inflammatory genes Tnf, Il1ß, Mcp1 and F4/80. As hepatic inflammation was not detected until 40 weeks of HFD, we show that AT inflammation is established prior to the development of hepatic inflammation. Thus, AT inflammation is likely to have a greater contribution to the development of IR compared to hepatic inflammation.


Assuntos
Tecido Adiposo/patologia , Dieta Hiperlipídica , Resistência à Insulina/fisiologia , Fígado/patologia , Obesidade/patologia , Tecido Adiposo/metabolismo , Animais , Inflamação/metabolismo , Inflamação/patologia , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Obesidade/etiologia , Obesidade/metabolismo , Regulação para Cima
7.
Atherosclerosis ; 232(2): 390-6, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24468153

RESUMO

OBJECTIVE: It is generally assumed that hepatic inflammation in obesity is linked to the pathogenesis of insulin resistance. Several recent studies have shed doubt on this view, which questions the causality of this association. This study focuses on Kupffer cell-mediated hepatic inflammation as a possible driver of insulin resistance in the absence and presence of obesity. METHODS: We used male mice deficient for the low-density lipoprotein receptor (Ldlr(-/-)) and susceptible to cholesterol-induced hepatic inflammation. Whole body and hepatic insulin resistance was measured in mice fed 4 diets for 2 and 15 weeks, i.e., chow, high-fat (HF), HF-cholesterol (HFC; 0.2% cholesterol) and HF without cholesterol (HFnC). Biochemical parameters in plasma and liver were measured and inflammation was determined using immunohistochemistry and RT-PCR. RESULTS: At 2 weeks, we did not find significant metabolic effects in either diet group, except for the mice fed a HFC diet which showed pronounced hepatic inflammation (p < 0.05) but normal insulin sensitivity. At 15 weeks, a significant increase in insulin levels, HOMA-IR, and hepatic insulin resistance was observed in mice fed a HFC, HFnC, and HF diet compared to chow-fed mice (p < 0.05). Regardless of the level of hepatic inflammation (HFC > HF, HFnC; p < 0.05) insulin resistance in mice fed HFC was no worse compared to mice on a HFnC and HF diet. CONCLUSION: These data show that cholesterol-induced hepatic inflammation does not contribute to the development of insulin resistance in male Ldlr(-/-) mice. This study suggests that Kupffer cell-driven hepatic inflammation is a consequence, not a cause, of metabolic dysfunction in obesity.


Assuntos
Colesterol/sangue , Resistência à Insulina , Fígado/patologia , Receptores de LDL/genética , Ração Animal , Animais , Dieta , Gorduras na Dieta , Teste de Tolerância a Glucose , Hepatócitos/citologia , Inflamação , Insulina/metabolismo , Células de Kupffer/citologia , Masculino , Camundongos , Camundongos Knockout
8.
PLoS One ; 9(4): e96345, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24781986

RESUMO

The adipokine chemerin and its receptor, chemokine-like receptor 1 (Cmklr1), are associated with insulin resistance and nonalcoholic fatty liver disease (NAFLD), which covers a broad spectrum of liver diseases, ranging from simple steatosis to nonalcoholic steatohepatitis (NASH). It is possible that chemerin and/or Cmklr1 exert their effects on these disorders through inflammation, but so far the data have been controversial. To gain further insight into this matter, we studied the effect of whole-body Cmklr1 deficiency on insulin resistance and NAFLD. In view of the primary role of macrophages in hepatic inflammation, we also transplanted bone marrow from Cmklr1 knock-out (Cmklr1-/-) mice and wild type (WT) mice into low-density lipoprotein receptor knock-out (Ldlr-/-) mice, a mouse model for NASH. All mice were fed a high fat, high cholesterol diet containing 21% fat from milk butter and 0.2% cholesterol for 12 weeks. Insulin resistance was assessed by an oral glucose tolerance test, an insulin tolerance test, and by measurement of plasma glucose and insulin levels. Liver pathology was determined by measuring hepatic inflammation, fibrosis, lipid accumulation and the NAFLD activity score (NAS). Whole-body Cmklr1 deficiency did not affect body weight gain or food intake. In addition, we observed no differences between WT and Cmklr1-/- mice for hepatic inflammatory and fibrotic gene expression, immune cell infiltration, lipid accumulation or NAS. In line with this, we detected no differences in insulin resistance. In concordance with whole-body Cmklr1 deficiency, the absence of Cmklr1 in bone marrow-derived cells in Ldlr-/- mice did not affect their insulin resistance or liver pathology. Our results indicate that Cmklr1 is not involved in the pathogenesis of insulin resistance or NAFLD. Thus, we recommend that the associations reported between Cmklr1 and insulin resistance or NAFLD should be interpreted with caution.


Assuntos
Fígado Gorduroso/genética , Resistência à Insulina/genética , Fígado/patologia , Receptores Acoplados a Proteínas G/genética , Animais , Peso Corporal , Fígado Gorduroso/patologia , Deleção de Genes , Fígado/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Hepatopatia Gordurosa não Alcoólica , Receptores de Quimiocinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA