Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Sci Transl Med ; 15(709): eabq0603, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37585505

RESUMO

An inhalable platform for messenger RNA (mRNA) therapeutics would enable minimally invasive and lung-targeted delivery for a host of pulmonary diseases. Development of lung-targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here, we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) (PACE) polyplexes for mRNA delivery using end-group modifications and polyethylene glycol. These polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for severe acute respiratory syndrome coronavirus 2 and found that intranasal vaccination with spike protein-encoding mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected susceptible mice from lethal viral challenge. Together, these results demonstrate the translational potential of PACE polyplexes for therapeutic delivery of mRNA to the lungs.


Assuntos
COVID-19 , Nanopartículas , Animais , Camundongos , Polímeros , RNA Mensageiro/genética , COVID-19/prevenção & controle , Pulmão , Vacinação
2.
bioRxiv ; 2022 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-35350207

RESUMO

An inhalable platform for mRNA therapeutics would enable minimally invasive and lung targeted delivery for a host of pulmonary diseases. Development of lung targeted mRNA therapeutics has been limited by poor transfection efficiency and risk of vehicle-induced pathology. Here we report an inhalable polymer-based vehicle for delivery of therapeutic mRNAs to the lung. We optimized biodegradable poly(amine-co-ester) polyplexes for mRNA delivery using end group modifications and polyethylene glycol. Our polyplexes achieved high transfection of mRNA throughout the lung, particularly in epithelial and antigen-presenting cells. We applied this technology to develop a mucosal vaccine for SARS-CoV-2. Intranasal vaccination with spike protein mRNA polyplexes induced potent cellular and humoral adaptive immunity and protected K18-hACE2 mice from lethal viral challenge. One-sentence summary: Inhaled polymer nanoparticles (NPs) achieve high mRNA expression in the lung and induce protective immunity against SARS-CoV-2.

3.
Biomaterials ; 272: 120780, 2021 05.
Artigo em Inglês | MEDLINE | ID: mdl-33813260

RESUMO

There is growing interest in PEGylation of cationic polymeric vehicles for gene delivery in order to improve vehicle stability and reduce toxicity, but little is known about the effects of PEG coatings on transfection. We used a polymer from the poly(amine-co-ester) (PACE) family blended with PEG-conjugated PACE at different ratios in order to explore the effects of polyplex PEGylation on the transfection efficiency of plasmid DNA, mRNA, and siRNA in vitro and mRNA in vivo. We discovered that concentrations of PACE-PEG as low as 0.25% by weight improved polyplex stability but also inhibited transfection in vitro. In vivo, the effect of PACE-PEG incorporation on mRNA transfection varied by delivery route; the addition of PACE-PEG improved local delivery to the lung, but PEGylation had little effect on intravenous systemic delivery. By both delivery routes, transfection was inhibited at concentrations higher than 5 wt% PACE-PEG. These results demonstrate that excess PEGylation can be detrimental to vehicle function, and suggest that PEGylation of cationic vehicles must be optimized by PEG content, cargo type, and delivery route.


Assuntos
Ésteres , Polietilenoglicóis , Aminas , Técnicas de Transferência de Genes , Tamanho da Partícula , Transfecção
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA