Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 18 de 18
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nature ; 559(7712): 135-139, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29950717

RESUMO

Plasmodium vivax is the most widely distributed malaria parasite that infects humans1. P. vivax invades reticulocytes exclusively, and successful entry depends on specific interactions between the P. vivax reticulocyte-binding protein 2b (PvRBP2b) and transferrin receptor 1 (TfR1)2. TfR1-deficient erythroid cells are refractory to invasion by P. vivax, and anti-PvRBP2b monoclonal antibodies inhibit reticulocyte binding and block P. vivax invasion in field isolates2. Here we report a high-resolution cryo-electron microscopy structure of a ternary complex of PvRBP2b bound to human TfR1 and transferrin, at 3.7 Å resolution. Mutational analyses show that PvRBP2b residues involved in complex formation are conserved; this suggests that antigens could be designed that act across P. vivax strains. Functional analyses of TfR1 highlight how P. vivax hijacks TfR1, an essential housekeeping protein, by binding to sites that govern host specificity, without affecting its cellular function of transporting iron. Crystal and solution structures of PvRBP2b in complex with antibody fragments characterize the inhibitory epitopes. Our results establish a structural framework for understanding how P. vivax reticulocyte-binding protein engages its receptor and the molecular mechanism of inhibitory monoclonal antibodies, providing important information for the design of novel vaccine candidates.


Assuntos
Microscopia Crioeletrônica , Plasmodium vivax/química , Plasmodium vivax/ultraestrutura , Proteínas de Protozoários/química , Proteínas de Protozoários/ultraestrutura , Anticorpos Monoclonais/imunologia , Anticorpos Monoclonais/farmacologia , Antígenos CD/química , Antígenos CD/genética , Antígenos CD/metabolismo , Antígenos CD/ultraestrutura , Sítios de Ligação , Humanos , Vacinas Antimaláricas/imunologia , Modelos Moleculares , Mutação , Plasmodium vivax/citologia , Plasmodium vivax/genética , Proteínas de Protozoários/antagonistas & inibidores , Proteínas de Protozoários/genética , Receptores da Transferrina/química , Receptores da Transferrina/genética , Receptores da Transferrina/metabolismo , Receptores da Transferrina/ultraestrutura , Reticulócitos/metabolismo , Relação Estrutura-Atividade , Transferrina/química , Transferrina/metabolismo , Transferrina/ultraestrutura
2.
Proc Natl Acad Sci U S A ; 118(1)2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33361153

RESUMO

Humans are chronically exposed to mixtures of xenobiotics referred to as endocrine-disrupting chemicals (EDCs). A vast body of literature links exposure to these chemicals with increased incidences of reproductive, metabolic, or neurological disorders. Moreover, recent data demonstrate that, when used in combination, chemicals have outcomes that cannot be predicted from their individual behavior. In its heterodimeric form with the retinoid X receptor (RXR), the pregnane X receptor (PXR) plays an essential role in controlling the mammalian xenobiotic response and mediates both beneficial and detrimental effects. Our previous work shed light on a mechanism by which a binary mixture of xenobiotics activates PXR in a synergistic fashion. Structural analysis revealed that mutual stabilization of the compounds within the ligand-binding pocket of PXR accounts for the enhancement of their binding affinity. In order to identify and characterize additional active mixtures, we combined a set of cell-based, biophysical, structural, and in vivo approaches. Our study reveals features that confirm the binding promiscuity of this receptor and its ability to accommodate bipartite ligands. We reveal previously unidentified binding mechanisms involving dynamic structural transitions and covalent coupling and report four binary mixtures eliciting graded synergistic activities. Last, we demonstrate that the robust activity obtained with two synergizing PXR ligands can be enhanced further in the presence of RXR environmental ligands. Our study reveals insights as to how low-dose EDC mixtures may alter physiology through interaction with RXR-PXR and potentially several other nuclear receptor heterodimers.


Assuntos
Receptor de Pregnano X/química , Receptores X de Retinoides/química , Xenobióticos , Animais , Linhagem Celular , Cristalografia por Raios X , Dimerização , Polarização de Fluorescência , Regulação da Expressão Gênica , Humanos , Ligantes , Luciferases/genética , Luciferases/metabolismo , Modelos Químicos , Receptor de Pregnano X/metabolismo , Receptores X de Retinoides/metabolismo , Xenobióticos/química , Xenobióticos/metabolismo , Xenobióticos/farmacologia , Xenopus
3.
Proc Natl Acad Sci U S A ; 115(36): E8450-E8459, 2018 09 04.
Artigo em Inglês | MEDLINE | ID: mdl-30127015

RESUMO

Wild-living African apes are endemically infected with parasites that are closely related to human Plasmodium vivax, a leading cause of malaria outside Africa. This finding suggests that the origin of P. vivax was in Africa, even though the parasite is now rare in humans there. To elucidate the emergence of human P. vivax and its relationship to the ape parasites, we analyzed genome sequence data of P. vivax strains infecting six chimpanzees and one gorilla from Cameroon, Gabon, and Côte d'Ivoire. We found that ape and human parasites share nearly identical core genomes, differing by only 2% of coding sequences. However, compared with the ape parasites, human strains of P. vivax exhibit about 10-fold less diversity and have a relative excess of nonsynonymous nucleotide polymorphisms, with site-frequency spectra suggesting they are subject to greatly relaxed purifying selection. These data suggest that human P. vivax has undergone an extreme bottleneck, followed by rapid population expansion. Investigating potential host-specificity determinants, we found that ape P. vivax parasites encode intact orthologs of three reticulocyte-binding protein genes (rbp2d, rbp2e, and rbp3), which are pseudogenes in all human P. vivax strains. However, binding studies of recombinant RBP2e and RBP3 proteins to human, chimpanzee, and gorilla erythrocytes revealed no evidence of host-specific barriers to red blood cell invasion. These data suggest that, from an ancient stock of P. vivax parasites capable of infecting both humans and apes, a severely bottlenecked lineage emerged out of Africa and underwent rapid population growth as it spread globally.


Assuntos
Evolução Molecular , Estudo de Associação Genômica Ampla , Plasmodium vivax/genética , Polimorfismo Genético , Proteínas de Protozoários/genética , Seleção Genética , Animais , Camarões , Côte d'Ivoire , Feminino , Gabão , Gorilla gorilla , Humanos , Masculino , Pan troglodytes , Proteínas de Protozoários/metabolismo , Pseudogenes
4.
Proc Natl Acad Sci U S A ; 113(2): E191-200, 2016 Jan 12.
Artigo em Inglês | MEDLINE | ID: mdl-26715754

RESUMO

Understanding how malaria parasites gain entry into human red blood cells is essential for developing strategies to stop blood stage infection. Plasmodium vivax preferentially invades reticulocytes, which are immature red blood cells. The organism has two erythrocyte-binding protein families: namely, the Duffy-binding protein (PvDBP) and the reticulocyte-binding protein (PvRBP) families. Several members of the PvRBP family bind reticulocytes, specifically suggesting a role in mediating host cell selectivity of P. vivax. Here, we present, to our knowledge, the first high-resolution crystal structure of an erythrocyte-binding domain from PvRBP2a, solved at 2.12 Å resolution. The monomeric molecule consists of 10 α-helices and one short ß-hairpin, and, although the structural fold is similar to that of PfRh5--the essential invasion ligand in Plasmodium falciparum--its surface properties are distinct and provide a possible mechanism for recognition of alternate receptors. Sequence alignments of the crystallized fragment of PvRBP2a with other PvRBPs highlight the conserved placement of disulfide bonds. PvRBP2a binds mature red blood cells through recognition of an erythrocyte receptor that is neuraminidase- and chymotrypsin-resistant but trypsin-sensitive. By examining the patterns of sequence diversity within field isolates, we have identified and mapped polymorphic residues to the PvRBP2a structure. Using mutagenesis, we have also defined the critical residues required for erythrocyte binding. Characterization of the structural features that govern functional erythrocyte binding for the PvRBP family provides a framework for generating new tools that block P. vivax blood stage infection.


Assuntos
Sequência Conservada , Eritrócitos/metabolismo , Plasmodium vivax/metabolismo , Proteínas de Protozoários/química , Proteínas de Protozoários/metabolismo , Sequência de Aminoácidos , Área Sob a Curva , Sequência de Bases , Cristalografia por Raios X , Evolução Molecular , Frequência do Gene , Genes de Protozoários , Haplótipos , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Plasmodium falciparum/genética , Plasmodium falciparum/metabolismo , Plasmodium vivax/genética , Polimorfismo de Nucleotídeo Único/genética , Estrutura Terciária de Proteína , Proteínas de Protozoários/genética , Espalhamento a Baixo Ângulo , Alinhamento de Sequência
5.
Malar J ; 16(1): 178, 2017 04 28.
Artigo em Inglês | MEDLINE | ID: mdl-28454546

RESUMO

BACKGROUND: Thailand is aiming to eliminate malaria by the year 2024. Plasmodium vivax has now become the dominant species causing malaria within the country, and a high proportion of infections are asymptomatic. A better understanding of antibody dynamics to P. vivax antigens in a low-transmission setting, where acquired immune responses are poorly characterized, will be pivotal for developing new strategies for elimination, such as improved surveillance methods and vaccines. The objective of this study was to characterize total IgG antibody levels to 11 key P. vivax proteins in a village of western Thailand. METHODS: Plasma samples from 546 volunteers enrolled in a cross-sectional survey conducted in 2012 in Kanchanaburi Province were utilized. Total IgG levels to 11 different proteins known or predicted to be involved in reticulocyte binding or invasion (ARP, GAMA, P41, P12, PVX_081550, and five members of the PvRBP family), as well as the leading pre-erythrocytic vaccine candidate (CSP) were measured using a multiplexed bead-based assay. Associations between IgG levels and infection status, age, and spatial location were explored. RESULTS: Individuals from a low-transmission region of western Thailand reacted to all 11 P. vivax recombinant proteins. Significantly greater IgG levels were observed in the presence of a current P. vivax infection, despite all infected individuals being asymptomatic. IgG levels were also higher in adults (18 years and older) than in children. For most of the proteins, higher IgG levels were observed in individuals living closer to the Myanmar border and further away from local health services. CONCLUSIONS: Robust IgG responses were observed to most proteins and IgG levels correlated with surrogates of exposure, suggesting these antigens may serve as potential biomarkers of exposure, immunity, or both.


Assuntos
Malária Vivax/imunologia , Plasmodium vivax/imunologia , Adolescente , Adulto , Idoso , Idoso de 80 Anos ou mais , Infecções Assintomáticas/epidemiologia , Criança , Pré-Escolar , Estudos Transversais , Feminino , Humanos , Imunoglobulina G , Lactente , Recém-Nascido , Malária Vivax/sangue , Malária Vivax/epidemiologia , Malária Vivax/parasitologia , Masculino , Pessoa de Meia-Idade , Tailândia/epidemiologia , Adulto Jovem
6.
Infect Immun ; 84(3): 677-85, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26712206

RESUMO

Members of the Plasmodium vivax reticulocyte binding protein (PvRBP) family are believed to mediate specific invasion of reticulocytes by P. vivax. In this study, we performed molecular characterization of genes encoding members of this protein family. Through cDNA sequencing, we constructed full-length gene models and verified genes that are protein coding and those that are pseudogenes. We also used quantitative PCR to measure their in vivo transcript abundances in clinical P. vivax isolates. Like genes encoding related invasion ligands of P. falciparum, Pvrbp expression levels vary broadly across different parasite isolates. Through antibody measurements, we found that host immune pressure may be the driving force behind the distinctly high diversity of one of the family members, PvRBP2c. Mild yet significant negative correlation was found between parasitemia and the PvRBP2b antibody level, suggesting that antibodies to the protein may interfere with invasion.


Assuntos
Malária Vivax/genética , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Plasmodium vivax/genética , Proteínas de Protozoários/imunologia , Humanos , Malária Vivax/parasitologia , Proteínas de Membrana/genética , Plasmodium vivax/imunologia , Plasmodium vivax/fisiologia , Proteínas de Protozoários/genética , Reticulócitos/imunologia , Reticulócitos/parasitologia
7.
J Mol Biol ; 436(3): 168411, 2024 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-38135181

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor belonging to the bHLH/PAS protein family and responding to hundreds of natural and chemical substances. It is primarily involved in the defense against chemical insults and bacterial infections or in the adaptive immune response, but also in the development of pathological conditions ranging from inflammatory to neoplastic disorders. Despite its prominent roles in many (patho)physiological processes, the lack of high-resolution structural data has precluded for thirty years an in-depth understanding of the structural mechanisms underlying ligand-binding specificity, promiscuity and activation of AHR. We recently reported a cryogenic electron microscopy (cryo-EM) structure of human AHR bound to the natural ligand indirubin, the chaperone Hsp90 and the co-chaperone XAP2 that provided the first experimental visualization of its ligand-binding PAS-B domain. Here, we report a 2.75 Å resolution structure of the AHR complex bound to the environmental pollutant benzo[a]pyrene (B[a]P). The structure substantiates the existence of a bipartite PAS-B ligand-binding pocket with a geometrically constrained primary binding site controlling ligand binding specificity and affinity, and a secondary binding site contributing to the binding promiscuity of AHR. We also report a docking study of B[a]P congeners that validates the B[a]P-bound PAS-B structure as a suitable model for accurate computational ligand binding assessment. Finally, comparison of our agonist-bound complex with the recently reported structures of mouse and fruit fly AHR PAS-B in different activation states suggests a ligand-induced loop conformational change potentially involved in the regulation of AHR function.


Assuntos
Benzo(a)pireno , Poluentes Ambientais , Receptores de Hidrocarboneto Arílico , Humanos , Benzo(a)pireno/química , Sítios de Ligação , Ligantes , Domínios Proteicos , Receptores de Hidrocarboneto Arílico/agonistas , Receptores de Hidrocarboneto Arílico/química , Poluentes Ambientais/química
8.
J Biol Chem ; 286(19): 17112-21, 2011 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-21454499

RESUMO

Bacterial UDP-sugar dehydrogenases are part of the biosynthesis pathway of extracellular polysaccharides. These compounds act as important virulence factors by protecting the cell from opsonophagocytosis and complement-mediated killing. In Staphylococcus aureus, the protein Cap5O catalyzes the oxidation of UDP-N-acetyl-mannosamine to UDP-N-acetyl-mannosaminuronic acid. Cap5O is crucial for the production of serotype 5 capsular polysaccharide that prevents the interaction of bacteria with both phagocytic and nonphagocytic eukaryotic cells. However, details of its catalytic mechanism remain unknown. We thus crystallized Cap5O and solved the first structure of an UDP-N-acetyl-mannosamine dehydrogenase. This study revealed that the catalytic cysteine makes a disulfide bond that has never been observed in other structurally characterized members of the NDP-sugar dehydrogenase family. Biochemical and mutagenesis experiments demonstrated that the formation of this disulfide bridge regulates the activity of Cap5O. We also identified two arginine residues essential for Cap5O activity. Previous data suggested that Cap5O is activated by tyrosine phosphorylation, so we characterized the phosphorylation site and examined the underlying regulatory mechanism.


Assuntos
Desidrogenases de Carboidrato/química , Polissacarídeos/química , Staphylococcus aureus/enzimologia , Sequência de Aminoácidos , Catálise , Cristalografia por Raios X/métodos , Dissulfetos/química , Espectrometria de Massas/métodos , Conformação Molecular , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Oxirredução , Fagocitose , Fosforilação , Fosfotirosina/química , Homologia de Sequência de Aminoácidos , Tirosina/química
9.
Nat Commun ; 13(1): 7010, 2022 11 16.
Artigo em Inglês | MEDLINE | ID: mdl-36385050

RESUMO

The aryl hydrocarbon receptor (AHR) is a ligand-dependent transcription factor that mediates a broad spectrum of (patho)physiological processes in response to numerous substances including pollutants, natural products and metabolites. However, the scarcity of structural data precludes understanding of how AHR is activated by such diverse compounds. Our 2.85 Å structure of the human indirubin-bound AHR complex with the chaperone Hsp90 and the co-chaperone XAP2, reported herein, reveals a closed conformation Hsp90 dimer with AHR threaded through its lumen and XAP2 serving as a brace. Importantly, we disclose the long-awaited structure of the AHR PAS-B domain revealing a unique organisation of the ligand-binding pocket and the structural determinants of ligand-binding specificity and promiscuity of the receptor. By providing structural details of the molecular initiating event leading to AHR activation, our study rationalises almost forty years of biochemical data and provides a framework for future mechanistic studies and structure-guided drug design.


Assuntos
Proteínas de Choque Térmico HSP90 , Peptídeos e Proteínas de Sinalização Intracelular , Receptores de Hidrocarboneto Arílico , Humanos , Microscopia Crioeletrônica , Citosol/metabolismo , Proteínas de Choque Térmico HSP90/metabolismo , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Ligantes , Receptores de Hidrocarboneto Arílico/metabolismo
10.
Mol Microbiol ; 77(5): 1315-25, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20633230

RESUMO

Capsular polysaccharides are well-established virulence factors of pathogenic bacteria. Their biosynthesis and export are regulated within the transmembrane polysaccharide assembly machinery by the autophosphorylation of atypical tyrosine-kinases, named BY-kinases. However, the accurate functioning of these tyrosine-kinases remains unknown. Here, we report the crystal structure of the non-phosphorylated cytoplasmic domain of the tyrosine-kinase Wzc from Escherichia coli in complex with ADP showing that it forms a ring-shaped octamer. Mutational analysis demonstrates that a conserved EX(2) RX(2) R motif involved in subunit interactions is essential for polysaccharide export. We also elucidate the role of a putative internal regulatory tyrosine and we show that BY-kinases from proteobacteria autophosphorylate on their C-terminal tyrosine cluster via a single-step intermolecular mechanism. This structure-function analysis also allows us to demonstrate that two different parts of a conserved basic region called the RK-cluster are essential for polysaccharide export and for kinase activity respectively. Based on these data, we revisit the dichotomy made between BY-kinases from proteobacteria and firmicutes and we propose a unique process of oligomerization and phosphorylation. We also reassess the function of BY-kinases in the capsular polysaccharide assembly machinery.


Assuntos
Difosfato de Adenosina/química , Proteínas de Escherichia coli/química , Escherichia coli/química , Proteínas de Membrana/química , Polissacarídeos Bacterianos/metabolismo , Proteínas Tirosina Quinases/química , Motivos de Aminoácidos/genética , Cristalografia por Raios X , Análise Mutacional de DNA , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Proteínas de Membrana/metabolismo , Fosforilação , Ligação Proteica , Domínios e Motivos de Interação entre Proteínas/genética , Multimerização Proteica , Estrutura Quaternária de Proteína , Proteínas Tirosina Quinases/metabolismo , Tirosina/metabolismo
11.
Nat Microbiol ; 6(8): 991-999, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34294905

RESUMO

More than one-third of the world's population is exposed to Plasmodium vivax malaria, mainly in Asia1. P. vivax preferentially invades reticulocytes (immature red blood cells)2-4. Previous work has identified 11 parasite proteins involved in reticulocyte invasion, including erythrocyte binding protein 2 (ref. 5) and the reticulocyte-binding proteins (PvRBPs)6-10. PvRBP2b binds to the transferrin receptor CD71 (ref. 11), which is selectively expressed on immature reticulocytes12. Here, we identified CD98 heavy chain (CD98), a heteromeric amino acid transporter from the SLC3 family (also known as SLCA2), as a reticulocyte-specific receptor for the PvRBP2a parasite ligand using mass spectrometry, flow cytometry, biochemical and parasite invasion assays. We characterized the expression level of CD98 at the surface of immature reticulocytes (CD71+) and identified an interaction between CD98 and PvRBP2a expressed at the merozoite surface. Our results identify CD98 as an additional host membrane protein, besides CD71, that is directly associated with P. vivax reticulocyte tropism. These findings highlight the potential of using PvRBP2a as a vaccine target against P. vivax malaria.


Assuntos
Eritrócitos/parasitologia , Cadeia Pesada da Proteína-1 Reguladora de Fusão/metabolismo , Malária Vivax/metabolismo , Plasmodium vivax/metabolismo , Antígenos CD , Antígenos de Protozoários/genética , Antígenos de Protozoários/metabolismo , Eritrócitos/metabolismo , Cadeia Pesada da Proteína-1 Reguladora de Fusão/genética , Interações Hospedeiro-Parasita , Humanos , Malária Vivax/sangue , Malária Vivax/genética , Plasmodium vivax/genética , Ligação Proteica , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Receptores da Transferrina , Reticulócitos/metabolismo , Reticulócitos/parasitologia
12.
PLoS Negl Trop Dis ; 13(8): e0007596, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31425514

RESUMO

BACKGROUND: The Plasmodium vivax Reticulocyte Binding Protein (PvRBP) family is involved in red blood cell recognition and members of this family are potential targets for antibodies that may block P. vivax invasion. To date, the acquisition of immunity against PvRBPs in low malaria transmission settings and in a broad age group of exposed individuals has not been investigated. METHODOLOGY/PRINCIPAL FINDINGS: Total IgG antibody levels to six members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, a non-binding fragment of PvRBP2c (PvRBP2cNB) and PvRBP2-P2) were measured in samples collected from individuals living in two regions of low P. vivax endemicity in Brazil and Thailand. In both settings, levels of total IgG to PvRBP1a, PvRBP2b, PvRBP2cNB, and PvRBP2P-2 increased significantly with age (rho = 0.17-0.49; P<0.001). IgG responses to PvRBP1a, PvRBP2b and PvRBP2cNB were significantly higher in infected individuals by using Wilcoxon's signed-rank test (P<0.001). Of the six PvRBPs examined, only antibodies to PvRBP2b were associated with protection against clinical malaria in both settings. CONCLUSION/SIGNIFICANCE: Our results indicate that PvRBP2b warrants further preclinical development as a blood-stage vaccine candidate against P. vivax. Total IgG responses to PvRBPs were also shown to be promising immunological markers of exposure to P. vivax infection.


Assuntos
Anticorpos Antiprotozoários/sangue , Malária Vivax/imunologia , Proteínas de Membrana/imunologia , Proteínas de Protozoários/imunologia , Adolescente , Adulto , Fatores Etários , Idoso , Idoso de 80 Anos ou mais , Brasil , Criança , Pré-Escolar , Estudos de Coortes , Transmissão de Doença Infecciosa/prevenção & controle , Feminino , Humanos , Imunoglobulina G/sangue , Lactente , Recém-Nascido , Masculino , Pessoa de Meia-Idade , Tailândia , Adulto Jovem
13.
Sci Rep ; 9(1): 8943, 2019 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-31221984

RESUMO

Plasmodium vivax parasites preferentially invade reticulocyte cells in a multistep process that is still poorly understood. In this study, we used ex vivo invasion assays and population genetic analyses to investigate the involvement of complement receptor 1 (CR1) in P. vivax invasion. First, we observed that P. vivax invasion of reticulocytes was consistently reduced when CR1 surface expression was reduced through enzymatic cleavage, in the presence of naturally low-CR1-expressing cells compared with high-CR1-expressing cells, and with the addition of soluble CR1, a known inhibitor of P. falciparum invasion. Immuno-precipitation experiments with P. vivax Reticulocyte Binding Proteins showed no evidence of complex formation. In addition, analysis of CR1 genetic data for worldwide human populations with different exposure to malaria parasites show significantly higher frequency of CR1 alleles associated with low receptor expression on the surface of RBCs and higher linkage disequilibrium in human populations exposed to P. vivax malaria compared with unexposed populations. These results are consistent with a positive selection of low-CR1-expressing alleles in vivax-endemic areas. Collectively, our findings demonstrate that CR1 availability on the surface of RBCs modulates P. vivax invasion. The identification of new molecular interactions is crucial to guiding the rational development of new therapeutic interventions against vivax malaria.


Assuntos
Membrana Eritrocítica/metabolismo , Plasmodium vivax/fisiologia , Receptores de Complemento/metabolismo , Reticulócitos/parasitologia , Frequência do Gene , Humanos , Desequilíbrio de Ligação , Malária Vivax/parasitologia , Malária Vivax/transmissão , Receptores de Complemento/genética
14.
Science ; 359(6371): 48-55, 2018 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-29302006

RESUMO

Plasmodium vivax shows a strict host tropism for reticulocytes. We identified transferrin receptor 1 (TfR1) as the receptor for P. vivax reticulocyte-binding protein 2b (PvRBP2b). We determined the structure of the N-terminal domain of PvRBP2b involved in red blood cell binding, elucidating the molecular basis for TfR1 recognition. We validated TfR1 as the biological target of PvRBP2b engagement by means of TfR1 expression knockdown analysis. TfR1 mutant cells deficient in PvRBP2b binding were refractory to invasion of P. vivax but not to invasion of P. falciparum Using Brazilian and Thai clinical isolates, we show that PvRBP2b monoclonal antibodies that inhibit reticulocyte binding also block P. vivax entry into reticulocytes. These data show that TfR1-PvRBP2b invasion pathway is critical for the recognition of reticulocytes during P. vivax invasion.


Assuntos
Antígenos CD/metabolismo , Malária Vivax/metabolismo , Malária Vivax/parasitologia , Proteínas de Membrana/química , Plasmodium vivax/patogenicidade , Proteínas de Protozoários/química , Receptores da Transferrina/metabolismo , Reticulócitos/parasitologia , Antígenos CD/genética , Cristalografia por Raios X , Técnicas de Silenciamento de Genes , Interações Hospedeiro-Parasita , Humanos , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Proteínas de Membrana/ultraestrutura , Plasmodium vivax/metabolismo , Domínios Proteicos , Proteínas de Protozoários/genética , Proteínas de Protozoários/metabolismo , Proteínas de Protozoários/ultraestrutura , Receptores da Transferrina/genética
15.
Elife ; 62017 09 26.
Artigo em Inglês | MEDLINE | ID: mdl-28949293

RESUMO

The study of antigenic targets of naturally-acquired immunity is essential to identify and prioritize antigens for further functional characterization. We measured total IgG antibodies to 38 P. vivax antigens, investigating their relationship with prospective risk of malaria in a cohort of 1-3 years old Papua New Guinean children. Using simulated annealing algorithms, the potential protective efficacy of antibodies to multiple antigen-combinations, and the antibody thresholds associated with protection were investigated for the first time. High antibody levels to multiple known and newly identified proteins were strongly associated with protection (IRR 0.44-0.74, p<0.001-0.041). Among five-antigen combinations with the strongest protective effect (>90%), EBP, DBPII, RBP1a, CyRPA, and PVX_081550 were most frequently identified; several of them requiring very low antibody levels to show a protective association. These data identify individual antigens that should be prioritized for further functional testing and establish a clear path to testing a multicomponent P. vivax vaccine.


Assuntos
Anticorpos Antiprotozoários/sangue , Antígenos de Protozoários/imunologia , Malária Vivax/prevenção & controle , Plasmodium vivax/imunologia , Proteínas de Protozoários/imunologia , Proteínas Recombinantes/imunologia , Antígenos de Protozoários/genética , Pré-Escolar , Humanos , Imunoglobulina G/sangue , Lactente , Vacinas Antimaláricas/isolamento & purificação , Papua Nova Guiné , Proteínas de Protozoários/genética , Proteínas Recombinantes/genética
16.
PLoS Negl Trop Dis ; 10(9): e0005014, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27677183

RESUMO

BACKGROUND: Major gaps in our understanding of Plasmodium vivax biology and the acquisition of immunity to this parasite hinder vaccine development. P. vivax merozoites exclusively invade reticulocytes, making parasite proteins that mediate reticulocyte binding and/or invasion potential key vaccine or drug targets. While protein interactions that mediate invasion are still poorly understood, the P. vivax Reticulocyte-Binding Protein family (PvRBP) is thought to be involved in P. vivax restricted host-cell selectivity. METHODOLOGY/PRINCIPAL FINDINGS: We assessed the binding specificity of five members of the PvRBP family (PvRBP1a, PvRBP1b, PvRBP2a, PvRBP2b, PvRBP2-P2 and a non-binding fragment of PvRBP2c) to normocytes or reticulocytes. PvRBP2b was identified as the only reticulocyte-specific binder (P<0.001), whereas the others preferentially bound to normocytes (PvRBP1a/b P≤0.034), or showed comparable binding to both (PvRBP2a/2-P2, P = 0.38). Furthermore, we measured levels of total and IgG subclasses 1, 2, 3 and 4 to the six PvRBPs in a cohort of young Papua New Guinean children, and assessed their relationship with prospective risk of P. vivax malaria. Children had substantial, highly correlated (rho = 0.49-0.82, P<0.001) antibody levels to all six PvRBPs, with dominant IgG1 and IgG3 subclasses. Both total IgG (Incidence Rate Ratio [IRR] 0.63-0.73, P = 0.008-0.041) and IgG1 (IRR 0.56-0.69, P = 0.001-0.035) to PvRBP2b and PvRBP1a were strongly associated with reduced risk of vivax-malaria, independently of age and exposure. CONCLUSION/SIGNIFICANCE: These results demonstrate a diversity of erythrocyte-binding phenotypes of PvRBPs, indicating binding to both reticulocyte-specific and normocyte-specific ligands. Our findings provide further insights into the naturally acquired immunity to P. vivax and highlight the importance of PvRBP proteins as targets of naturally acquired humoral immunity. In-depth studies of the role of PvRBPs in P. vivax invasion and functional validation of the role of anti-PvRBP antibodies in clinical immunity against P. vivax are now required to confirm the potential of the reticulocyte-binding PvRBP2b and PvRBP1a as vaccine candidate antigens.

17.
PLoS One ; 8(10): e75958, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24146800

RESUMO

A particular class of tyrosine-kinases sharing no structural similarity with eukaryotic tyrosine-kinases has been evidenced in a large array of bacterial species. These bacterial tyrosine-kinases are able to autophosphorylate on a C-terminal tyrosine-rich motif. Their autophosphorylation has been shown to play a crucial role in the biosynthesis or export of capsular polysaccharide. The analysis of the first crystal structure of the staphylococcal tyrosine kinase CapB2 associated with the activating domain of the transmembrane modulator CapA1 had brought conclusive explanation for both the autophosphorylation and activation processes. In order to explain why CapA1 activates CapB2 more efficiently than its cognate transmembrane modulator CapA2, we solved the crystal structure of CapA2B2 and compared it with the previously published structure of CapA1B2. This structural analysis did not provide the expected clues about the activation discrepancy observed between the two modulators. Staphylococcus aureus also encodes for a CapB2 homologue named CapB1 displaying more than 70% sequence similarity and being surprisingly nearly unable to autophosphorylate. We solved the crystal structure of CapA1B1 and carefully compare it with the structure of CapA1B2. The active sites of both proteins are highly conserved and the biochemical characterization of mutant proteins engineered to test the importance of small structural discrepancies identified between the two structures did not explain the inactivity of CapB1. We thus tested if CapB1 could phosphorylate other protein substrates or hydrolyze ATP. However, no activity could be detected in our in vitro assays. Taken together, these data question about the biological role of the homologous protein pairs CapA1/CapB1 and CapA2/CapB2 and we discuss about several possible interpretations.


Assuntos
Proteínas de Bactérias/química , Regulação Bacteriana da Expressão Gênica , Proteínas Tirosina Quinases/química , Staphylococcus aureus/genética , Sequência de Aminoácidos , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Domínio Catalítico , Cristalografia por Raios X , Escherichia coli/genética , Escherichia coli/metabolismo , Isoenzimas/química , Isoenzimas/genética , Isoenzimas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Fosforilação , Ligação Proteica , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/genética , Proteínas Tirosina Quinases/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Staphylococcus aureus/enzimologia , Homologia Estrutural de Proteína
18.
Protein Sci ; 18(10): 2067-79, 2009 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-19670212

RESUMO

The DH-PH domain tandems of Dbl-homology guanine nucleotide exchange factors catalyze the exchange of GTP for GDP in Rho-family GTPases, and thus initiate a wide variety of cellular signaling cascades. Although several crystal structures of complexes of DH-PH tandems with cognate, nucleotide free Rho GTPases are known, they provide limited information about the dynamics of the complex and it is not clear how accurately they represent the structures in solution. We used a complementary combination of nuclear magnetic resonance (NMR), small-angle X-ray scattering (SAXS), and hydrogen-deuterium exchange mass spectrometry (DXMS) to study the solution structure and dynamics of the DH-PH tandem of RhoA-specific exchange factor PDZRhoGEF, both in isolation and in complex with nucleotide free RhoA. We show that in solution the DH-PH tandem behaves as a rigid entity and that the mutual disposition of the DH and PH domains remains identical within experimental error to that seen in the crystal structure of the complex, thus validating the latter as an accurate model of the complex in vivo. We also show that the nucleotide-free RhoA exhibits elevated dynamics when in complex with DH-PH, a phenomenon not observed in the crystal structure, presumably due to the restraining effects of crystal contacts. The complex is readily and rapidly dissociated in the presence of both GDP and GTP nucleotides, with no evidence of intermediate ternary complexes.


Assuntos
Fatores de Troca do Nucleotídeo Guanina/química , Complexos Multiproteicos/química , Domínios PDZ , Proteína rhoA de Ligação ao GTP/química , Humanos , Conformação Proteica , Fatores de Troca de Nucleotídeo Guanina Rho
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA