Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 41
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Mol Psychiatry ; 27(4): 2158-2170, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35301427

RESUMO

Opioid use disorder is a highly heterogeneous disease driven by a variety of genetic and environmental risk factors which have yet to be fully elucidated. Opioid overdose, the most severe outcome of opioid use disorder, remains the leading cause of accidental death in the United States. We interrogated the effects of opioid overdose on the brain using ChIP-seq to quantify patterns of H3K27 acetylation in dorsolateral prefrontal cortical neurons isolated from 51 opioid-overdose cases and 51 accidental death controls. Among opioid cases, we observed global hypoacetylation and identified 388 putative enhancers consistently depleted for H3K27ac. Machine learning on H3K27ac patterns predicted case-control status with high accuracy. We focused on case-specific regulatory alterations, revealing 81,399 hypoacetylation events, uncovering vast inter-patient heterogeneity. We developed a strategy to decode this heterogeneity based on convergence analysis, which leveraged promoter-capture Hi-C to identify five genes over-burdened by alterations in their regulatory network or "plexus": ASTN2, KCNMA1, DUSP4, GABBR2, ENOX1. These convergent loci are enriched for opioid use disorder risk genes and heritability for generalized anxiety, number of sexual partners, and years of education. Overall, our multi-pronged approach uncovers neurobiological aspects of opioid use disorder and captures genetic and environmental factors perpetuating the opioid epidemic.


Assuntos
Overdose de Opiáceos , Transtornos Relacionados ao Uso de Opioides , Analgésicos Opioides/uso terapêutico , Epigênese Genética/genética , Humanos , Aprendizado de Máquina , Transtornos Relacionados ao Uso de Opioides/tratamento farmacológico , Estados Unidos
2.
J Nat Prod ; 85(5): 1419-1427, 2022 05 27.
Artigo em Inglês | MEDLINE | ID: mdl-35465663

RESUMO

Chemical investigation of the marine hydroid Dentitheca habereri led to the identification of eight new diacylated zoanthoxanthin alkaloids, named dentithecamides A-H (1-8), along with three previously reported analogues, zoamides B-D (9-11). The structures of compounds 1-11 were elucidated by spectroscopic and spectrometric analyses, including IR, HRESIMS, and NMR experiments, and by comparison with literature data. Compounds 1-11 are the first zoanthoxanthin alkaloids to be reported from a hydroid. Dentithecamides A (1) and B (2) along with zoamides B-D (9-11), which all share a conformationally mobile cycloheptadiene core, inhibited PAX3-FOXO1 regulated transcriptional activity and thus provided a structural framework for the potential development of more potent PAX3-FOXO1 inhibitors.


Assuntos
Alcaloides , Imidazóis , Alcaloides/química
3.
J Nat Prod ; 83(11): 3464-3470, 2020 11 25.
Artigo em Inglês | MEDLINE | ID: mdl-33151696

RESUMO

Seven new arylpyrrole alkaloids (1-7), along with four known compounds, were isolated from an extract of a Dactylia sp. nov. marine sponge, and their structures were elucidated by interpretation of NMR and MS spectroscopic data. Denigrins D-G (1-4) have highly substituted pyrrole or pyrrolone rings in their core structures, while dactylpyrroles A-C (5-7) have tricyclic phenanthrene cores. Due to the proton-deficient nature of these scaffolds, key heteronuclear correlations from 1H-15N HMBC and LR-HSQMBC NMR experiments were used in the structure assignment of denigrin D (1). Dictyodendrin F (8), a previously described co-metabolite, inhibited transcription driven by the oncogenic PAX3-FOXO1 fusion gene with an IC50 value of 13 µM.


Assuntos
Alcaloides/química , Poríferos/química , Pirróis/química , Animais , Espectroscopia de Ressonância Magnética Nuclear de Carbono-13/métodos , Estrutura Molecular , Espectroscopia de Prótons por Ressonância Magnética/métodos
4.
Pediatr Blood Cancer ; 66(10): e27869, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31222885

RESUMO

Overall survival rates for pediatric patients with high-risk or relapsed rhabdomyosarcoma (RMS) have not improved significantly since the 1980s. Recent studies have identified a number of targetable vulnerabilities in RMS, but these discoveries have infrequently translated into clinical trials. We propose streamlining the process by which agents are selected for clinical evaluation in RMS. We believe that strong consideration should be given to the development of combination therapies that add biologically targeted agents to conventional cytotoxic drugs. One example of this type of combination is the addition of the WEE1 inhibitor AZD1775 to the conventional cytotoxic chemotherapeutics, vincristine and irinotecan.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica , Desenvolvimento de Medicamentos/métodos , Descoberta de Drogas/métodos , Rabdomiossarcoma , Criança , Humanos , Projetos de Pesquisa
5.
Mol Carcinog ; 57(10): 1342-1357, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29873416

RESUMO

Ewing sarcoma (EWS) is a soft tissue and bone tumor that occurs primarily in adolescents and young adults. In most cases of EWS, the chimeric transcription factor, EWS-FLI1 is the primary oncogenic driver. The epigenome of EWS cells reflects EWS-FLI1 binding and activation or repression of transcription. Here, we demonstrate that EWS-FLI1 positively regulates the expression of proteins required for serine-glycine biosynthesis and uptake of the alternative nutrient source glutamine. Specifically, we show that EWS-FLI1 activates expression of PHGDH, PSAT1, PSPH, and SHMT2. Using cell-based studies, we also establish that EWS cells are dependent on glutamine for cell survival and that EWS-FLI1 positively regulates expression of the glutamine transporter, SLC1A5 and two enzymes involved in the one-carbon cycle, MTHFD2 and MTHFD1L. Inhibition of serine-glycine biosynthesis in EWS cells impacts their redox state leading to an accumulation of reactive oxygen species, DNA damage, and apoptosis. Importantly, analysis of EWS primary tumor transcriptome data confirmed that the aforementioned genes we identified as regulated by EWS-FLI1 exhibit increased expression compared with normal tissues. Furthermore, retrospective analysis of an independent data set generated a significant stratification of the overall survival of EWS patients into low- and high-risk groups based on the expression of PHGDH, PSAT1, PSPH, SHMT2, SLC1A5, MTHFD2, and MTHFD1L. In summary, our study demonstrates that EWS-FLI1 reprograms the metabolism of EWS cells and that serine-glycine metabolism or glutamine uptake are potential targetable vulnerabilities in this tumor type.


Assuntos
Glutamina/metabolismo , Glicina/biossíntese , Proteínas de Fusão Oncogênica/metabolismo , Proteína Proto-Oncogênica c-fli-1/metabolismo , Proteína EWS de Ligação a RNA/metabolismo , Serina/biossíntese , Sistema ASC de Transporte de Aminoácidos/genética , Sistema ASC de Transporte de Aminoácidos/metabolismo , Aminoidrolases/genética , Aminoidrolases/metabolismo , Apoptose/genética , Neoplasias Ósseas/genética , Neoplasias Ósseas/metabolismo , Neoplasias Ósseas/patologia , Linhagem Celular Tumoral , Sobrevivência Celular/genética , Formiato-Tetra-Hidrofolato Ligase/genética , Formiato-Tetra-Hidrofolato Ligase/metabolismo , Regulação Neoplásica da Expressão Gênica , Células HCT116 , Células HEK293 , Humanos , Metilenotetra-Hidrofolato Desidrogenase (NADP)/genética , Metilenotetra-Hidrofolato Desidrogenase (NADP)/metabolismo , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/metabolismo , Complexos Multienzimáticos/genética , Complexos Multienzimáticos/metabolismo , Enzimas Multifuncionais/genética , Enzimas Multifuncionais/metabolismo , Proteínas de Fusão Oncogênica/genética , Fosfoglicerato Desidrogenase/genética , Fosfoglicerato Desidrogenase/metabolismo , Proteína Proto-Oncogênica c-fli-1/genética , Proteína EWS de Ligação a RNA/genética , Sarcoma de Ewing/genética , Sarcoma de Ewing/metabolismo , Sarcoma de Ewing/patologia
7.
bioRxiv ; 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-38260361

RESUMO

PURPOSE: Lung metastasis is responsible for nearly all deaths caused by osteosarcoma, the most common pediatric bone tumor. How malignant bone cells coerce the lung microenvironment to support metastatic growth is unclear. The purpose of this study is to identify metastasis-specific therapeutic vulnerabilities by delineating the cellular and molecular mechanisms underlying osteosarcoma lung metastatic niche formation. EXPERIMENTAL DESIGN: Using single-cell transcriptomics (scRNA-seq), we characterized genome- and tissue-wide molecular changes induced within lung tissues by disseminated osteosarcoma cells in both immunocompetent murine models of metastasis and patient samples. We confirmed transcriptomic findings at the protein level and determined spatial relationships with multi-parameter immunofluorescence and spatial transcriptomics. Based on these findings, we evaluated the ability of nintedanib, a kinase inhibitor used to treat patients with pulmonary fibrosis, to impair metastasis progression in both immunocompetent murine osteosarcoma and immunodeficient human xenograft models. Single-nucleus and spatial transcriptomics was used to perform molecular pharmacodynamic studies that define the effects of nintedanib on tumor and non-tumor cells within the metastatic microenvironment. RESULTS: Osteosarcoma cells induced acute alveolar epithelial injury upon lung dissemination. scRNA-seq demonstrated that the surrounding lung stroma adopts a chronic, non-resolving wound-healing phenotype similar to that seen in other models of lung injury. Accordingly, metastasis-associated lung demonstrated marked fibrosis, likely due to the accumulation of pathogenic, pro-fibrotic, partially differentiated epithelial intermediates and macrophages. Our data demonstrated that nintedanib prevented metastatic progression in multiple murine and human xenograft models by inhibiting osteosarcoma-induced fibrosis. CONCLUSIONS: Fibrosis represents a targetable vulnerability to block the progression of osteosarcoma lung metastasis. Our data support a model wherein interactions between osteosarcoma cells and epithelial cells create a pro-metastatic niche by inducing tumor deposition of extracellular matrix proteins such as fibronectin that is disrupted by the anti-fibrotic TKI nintedanib. Our data shed light on the non-cell autonomous effects of TKIs on metastasis and provide a roadmap for using single-cell and spatial transcriptomics to define the mechanism of action of TKI on metastases in animal models.

8.
Nat Commun ; 15(1): 1703, 2024 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-38402212

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) is an aggressive pediatric sarcoma driven primarily by the PAX3-FOXO1 fusion oncogene, for which therapies targeting PAX3-FOXO1 are lacking. Here, we screen 62,643 compounds using an engineered cell line that monitors PAX3-FOXO1 transcriptional activity identifying a hitherto uncharacterized compound, P3FI-63. RNA-seq, ATAC-seq, and docking analyses implicate histone lysine demethylases (KDMs) as its targets. Enzymatic assays confirm the inhibition of multiple KDMs with the highest selectivity for KDM3B. Structural similarity search of P3FI-63 identifies P3FI-90 with improved solubility and potency. Biophysical binding of P3FI-90 to KDM3B is demonstrated using NMR and SPR. P3FI-90 suppresses the growth of FP-RMS in vitro and in vivo through downregulating PAX3-FOXO1 activity, and combined knockdown of KDM3B and KDM1A phenocopies P3FI-90 effects. Thus, we report KDM inhibitors P3FI-63 and P3FI-90 with the highest specificity for KDM3B. Their potent suppression of PAX3-FOXO1 activity indicates a possible therapeutic approach for FP-RMS and other transcriptionally addicted cancers.


Assuntos
Rabdomiossarcoma Alveolar , Rabdomiossarcoma , Criança , Humanos , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Rabdomiossarcoma Alveolar/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/tratamento farmacológico , Rabdomiossarcoma/genética , Proteína Forkhead Box O1/genética , Proteína Forkhead Box O1/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Regulação Neoplásica da Expressão Gênica , Fator de Transcrição PAX3/genética , Fator de Transcrição PAX3/metabolismo , Histona Desmetilases com o Domínio Jumonji/genética , Histona Desmetilases com o Domínio Jumonji/metabolismo , Histona Desmetilases/metabolismo
9.
ACS Chem Biol ; 18(4): 1027-1036, 2023 04 21.
Artigo em Inglês | MEDLINE | ID: mdl-35297606

RESUMO

Gene transcription does not only require writers of active histone modifications; on-site opposition by erasers is essential for many genes. Here, we propose the concept of dynamic opposition of histone modifications to explain this conundrum. We highlight the requirement of HDACs for acetylation balance at superenhancers, and the requirement of KDM5A for H4K3me3 recycling at highly active gene promoters. We propose that histone post-translational modifications regulate charge balance for biomolecular condensate formation and nucleosome turnover and form a short-term memory that informs lock-and-step checkpoints for chromatin engagement by RNA polymerase II.


Assuntos
Código das Histonas , Histonas , Histonas/metabolismo , Cromatina , Nucleossomos , Processamento de Proteína Pós-Traducional , Acetilação
10.
Nat Commun ; 14(1): 7209, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938582

RESUMO

The metastasis-invasion cascade describes the series of steps required for a cancer cell to successfully spread from its primary tumor and ultimately grow within a secondary organ. Despite metastasis being a dynamic, multistep process, most omics studies to date have focused on comparing primary tumors to the metastatic deposits that define end-stage disease. This static approach means we lack information about the genomic and epigenomic changes that occur during the majority of tumor progression. One particularly understudied phase of tumor progression is metastatic colonization, during which cells must adapt to the new microenvironment of the secondary organ. Through temporal profiling of chromatin accessibility and gene expression in vivo, we identify dynamic changes in the epigenome that occur as osteosarcoma tumors form and grow within the lung microenvironment. Furthermore, we show through paired in vivo and in vitro CRISPR drop-out screens and pharmacological validation that the upstream transcription factors represent a class of metastasis-specific dependency genes. While current models depict lung colonization as a discrete step within the metastatic cascade, our study shows it is a defined trajectory through multiple epigenetic states, revealing new therapeutic opportunities undetectable with standard approaches.


Assuntos
Neoplasias Ósseas , Osteossarcoma , Humanos , Cromatina/genética , Osteossarcoma/genética , Repetições Palindrômicas Curtas Agrupadas e Regularmente Espaçadas , Epigenoma , Neoplasias Ósseas/genética , Microambiente Tumoral
11.
Pharmaceuticals (Basel) ; 16(2)2023 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-37259348

RESUMO

Fusion-positive rhabdomyosarcoma (FP-RMS) is driven by a translocation that creates the chimeric transcription factor PAX3-FOXO1 (P3F), which assembles de novo super enhancers to drive high levels of transcription of other core regulatory transcription factors (CRTFs). P3F recruits co-regulatory factors to super enhancers such as BRD4, which recognizes acetylated lysines via BET bromodomains. In this study, we demonstrate that inhibition or degradation of BRD4 leads to global decreases in transcription, and selective downregulation of CRTFs. We also show that the BRD4 degrader ARV-771 halts transcription while preserving RNA Polymerase II (Pol2) loops between super enhancers and their target genes, and causes the removal of Pol2 only past the transcriptional end site of CRTF genes, suggesting a novel effect of BRD4 on Pol2 looping. We finally test the most potent molecule, inhibitor BMS-986158, in an orthotopic PDX mouse model of FP-RMS with additional high-risk mutations, and find that it is well tolerated in vivo and leads to an average decrease in tumor size. This effort represents a partnership with an FP-RMS patient and family advocates to make preclinical data rapidly accessible to the family, and to generate data to inform future patients who develop this disease.

12.
SLAS Discov ; 28(4): 193-201, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37121274

RESUMO

We report a comprehensive drug synergy study in acute myeloid leukemia (AML). In this work, we investigate a panel of cell lines spanning both MLL-rearranged and non-rearranged subtypes. The work comprises a resource for the community, with many synergistic drug combinations that could not have been predicted a priori, and open source code for automation and analyses. We base our definitions of drug synergy on the Chou-Talalay method, which is useful for visualizations of synergy experiments in isobolograms, and median-effects plots, among other representations. Our key findings include drug synergies affecting the chromatin state, specifically in the context of regulation of the modification state of histone H3 lysine-27. We report open source high throughput methodology such that multidimensional drug screening can be accomplished with equipment that is accessible to most laboratories. This study will enable preclinical investigation of new drug combinations in a lethal blood cancer, with data analysis and automation workflows freely available to the community.


Assuntos
Leucemia Mieloide Aguda , Proteína de Leucina Linfoide-Mieloide , Humanos , Proteína de Leucina Linfoide-Mieloide/metabolismo , Histona-Lisina N-Metiltransferase , Leucemia Mieloide Aguda/tratamento farmacológico , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Combinação de Medicamentos , Avaliação Pré-Clínica de Medicamentos
13.
Nat Commun ; 14(1): 8361, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102136

RESUMO

Activation of oncogenic gene expression from long-range enhancers is initiated by the assembly of DNA-binding transcription factors (TF), leading to recruitment of co-activators such as CBP/p300 to modify the local genomic context and facilitate RNA-Polymerase 2 (Pol2) binding. Yet, most TF-to-coactivator recruitment relationships remain unmapped. Here, studying the oncogenic fusion TF PAX3-FOXO1 (P3F) from alveolar rhabdomyosarcoma (aRMS), we show that a single cysteine in the activation domain (AD) of P3F is important for a small alpha helical coil that recruits CBP/p300 to chromatin. P3F driven transcription requires both this single cysteine and CBP/p300. Mutants of the cysteine reduce aRMS cell proliferation and induce cellular differentiation. Furthermore, we discover a profound dependence on CBP/p300 for clustering of Pol2 loops that connect P3F to its target genes. In the absence of CBP/p300, Pol2 long range enhancer loops collapse, Pol2 accumulates in CpG islands and fails to exit the gene body. These results reveal a potential novel axis for therapeutic interference with P3F in aRMS and clarify the molecular relationship of P3F and CBP/p300 in sustaining active Pol2 clusters essential for oncogenic transcription.


Assuntos
RNA Polimerase II , Rabdomiossarcoma Alveolar , Humanos , RNA Polimerase II/genética , RNA Polimerase II/metabolismo , Cisteína/metabolismo , Fatores de Transcrição/metabolismo , Fator de Transcrição PAX3/genética , Rabdomiossarcoma Alveolar/genética , RNA/metabolismo , Ativação Transcricional , Ligação Proteica , Proteína Forkhead Box O1/metabolismo
14.
Cell Rep Med ; 4(10): 101212, 2023 10 17.
Artigo em Inglês | MEDLINE | ID: mdl-37774704

RESUMO

Pediatric patients with relapsed or refractory rhabdomyosarcoma (RMS) have dismal cure rates, and effective therapy is urgently needed. The oncogenic receptor tyrosine kinase fibroblast growth factor receptor 4 (FGFR4) is highly expressed in RMS and lowly expressed in healthy tissues. Here, we describe a second-generation FGFR4-targeting chimeric antigen receptor (CAR), based on an anti-human FGFR4-specific murine monoclonal antibody 3A11, as an adoptive T cell treatment for RMS. The 3A11 CAR T cells induced robust cytokine production and cytotoxicity against RMS cell lines in vitro. In contrast, a panel of healthy human primary cells failed to activate 3A11 CAR T cells, confirming the selectivity of 3A11 CAR T cells against tumors with high FGFR4 expression. Finally, we demonstrate that 3A11 CAR T cells are persistent in vivo and can effectively eliminate RMS tumors in two metastatic and two orthotopic models. Therefore, our study credentials CAR T cell therapy targeting FGFR4 to treat patients with RMS.


Assuntos
Receptores de Antígenos Quiméricos , Rabdomiossarcoma , Animais , Criança , Humanos , Camundongos , Linhagem Celular Tumoral , Imunoterapia Adotiva , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/genética , Receptor Tipo 4 de Fator de Crescimento de Fibroblastos/metabolismo , Receptores de Antígenos Quiméricos/genética , Rabdomiossarcoma/tratamento farmacológico
15.
Blood Adv ; 7(15): 4218-4232, 2023 08 08.
Artigo em Inglês | MEDLINE | ID: mdl-36607839

RESUMO

CD19 chimeric antigen receptor T-cell therapy (CD19-CAR) has changed the treatment landscape and outcomes for patients with pre-B-cell acute lymphoblastic leukemia (B-ALL). Unfortunately, primary nonresponse (PNR), sustained CD19+ disease, and concurrent expansion of CD19-CAR occur in 20% of the patients and is associated with adverse outcomes. Although some failures may be attributable to CD19 loss, mechanisms of CD19-independent, leukemia-intrinsic resistance to CD19-CAR remain poorly understood. We hypothesize that PNR leukemias are distinct compared with primary sensitive (PS) leukemias and that these differences are present before treatment. We used a multiomic approach to investigate this in 14 patients (7 with PNR and 7 with PS) enrolled in the PLAT-02 trial at Seattle Children's Hospital. Long-read PacBio sequencing helped identify 1 PNR in which 47% of CD19 transcripts had exon 2 skipping, but other samples lacked CD19 transcript abnormalities. Epigenetic profiling discovered DNA hypermethylation at genes targeted by polycomb repressive complex 2 (PRC2) in embryonic stem cells. Similarly, assays of transposase-accessible chromatin-sequencing revealed reduced accessibility at these PRC2 target genes, with a gain in accessibility of regions characteristic of hematopoietic stem cells and multilineage progenitors in PNR. Single-cell RNA sequencing and cytometry by time of flight analyses identified leukemic subpopulations expressing multilineage markers and decreased antigen presentation in PNR. We thus describe the association of a stem cell epigenome with primary resistance to CD19-CAR therapy. Future trials incorporating these biomarkers, with the addition of multispecific CAR T cells targeting against leukemic stem cell or myeloid antigens, and/or combined epigenetic therapy to disrupt this distinct stem cell epigenome may improve outcomes of patients with B-ALL.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras , Linfócitos T , Criança , Humanos , Epigenoma , Leucemia-Linfoma Linfoblástico de Células Precursoras/genética , Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Antígenos CD19 , Células-Tronco Hematopoéticas
16.
Nat Commun ; 14(1): 8373, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-38102140

RESUMO

Rhabdomyosarcomas (RMS) are pediatric mesenchymal-derived malignancies encompassing PAX3/7-FOXO1 Fusion Positive (FP)-RMS, and Fusion Negative (FN)-RMS with frequent RAS pathway mutations. RMS express the master myogenic transcription factor MYOD that, whilst essential for survival, cannot support differentiation. Here we discover SKP2, an oncogenic E3-ubiquitin ligase, as a critical pro-tumorigenic driver in FN-RMS. We show that SKP2 is overexpressed in RMS through the binding of MYOD to an intronic enhancer. SKP2 in FN-RMS promotes cell cycle progression and prevents differentiation by directly targeting p27Kip1 and p57Kip2, respectively. SKP2 depletion unlocks a partly MYOD-dependent myogenic transcriptional program and strongly affects stemness and tumorigenic features and prevents in vivo tumor growth. These effects are mirrored by the investigational NEDDylation inhibitor MLN4924. Results demonstrate a crucial crosstalk between transcriptional and post-translational mechanisms through the MYOD-SKP2 axis that contributes to tumorigenesis in FN-RMS. Finally, NEDDylation inhibition is identified as a potential therapeutic vulnerability in FN-RMS.


Assuntos
Rabdomiossarcoma , Humanos , Carcinogênese/genética , Linhagem Celular Tumoral , Rabdomiossarcoma/genética , Rabdomiossarcoma/patologia , Fatores de Transcrição , Transformação Celular Neoplásica , Diferenciação Celular
17.
Bioconjug Chem ; 23(8): 1507-12, 2012 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-22768914

RESUMO

Prostate cancer is the most commonly diagnosed cancer among men in the developed countries.(1) One in six males in the U.S.(2) and one in nine males in the U.K.(3) will develop the disease at some point during their lifetime. Despite advances in prostate cancer screening, more than a quarter of a million men die from the disease every year(1) due primarily to treatment-resistance and metastasis. Colloidal nanotechnologies can provide tremendous enhancements to existing targeting/treatment strategies for prostate cancer to which malignant cells are less sensitive. Here, we show that antiandrogen gold nanoparticles--multivalent analogues of antiandrogens currently used in clinical therapy for prostate cancer--selectively engage two distinct receptors, androgen receptor (AR), a target for the treatment of prostate cancer, as well as a novel G-protein coupled receptor, GPRC6A, that is also upregulated in prostate cancer. These nanoparticles selectively accumulated in hormone-insensitive and chemotherapy-resistant prostate cancer cells, bound androgen receptor with multivalent affinity, and exhibited greatly enhanced drug potency versus monovalent antiandrogens currently in clinical use. Further, antiandrogen gold nanoparticles selectively stimulated GPRC6A with multivalent affinity, demonstrating that the delivery of nanoscale antiandrogens can also be facilitated by the transmembrane receptor in order to realize increasingly selective, increasingly potent therapy for treatment-resistant prostate cancers.


Assuntos
Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Ouro/química , Ouro/farmacologia , Hormônios/farmacologia , Nanopartículas Metálicas , Terapia de Alvo Molecular/métodos , Neoplasias da Próstata/patologia , Antagonistas de Androgênios/química , Antagonistas de Androgênios/metabolismo , Antagonistas de Androgênios/farmacologia , Antagonistas de Androgênios/uso terapêutico , Linhagem Celular Tumoral , Ouro/metabolismo , Ouro/uso terapêutico , Humanos , Masculino , Simulação de Acoplamento Molecular , Tamanho da Partícula , Receptores Androgênicos/química , Receptores Androgênicos/metabolismo
18.
Org Lett ; 23(9): 3278-3281, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33848174

RESUMO

Neopetrothiazide (1), a pentacyclic isoquinoline quinone, was isolated from a Neopetrosia sp. sponge. The structure elucidation was facilitated by utilizing long-range heteronuclear single quantum multiple bond correlation (LR-HSQMBC) and heteronuclear multiple bond correlation (HMBC) nuclear magnetic resonance (NMR) pulse sequences optimized to detect four- and five-bond 1H-13C heteronuclear correlations. These NMR experiments can help assign proton-deficient structural motifs like neopetrothiazide (1), which has 14 contiguous nonprotonated centers (C, N, and S). Neopetrothiazide (1), with an unprecedented thiazide-fused structural scaffold, is the first natural product containing a thiazide moiety.


Assuntos
Alcaloides/química , Produtos Biológicos/química , Poríferos/química , Animais , Espectroscopia de Ressonância Magnética , Estrutura Molecular , Ressonância Magnética Nuclear Biomolecular , Prótons
19.
Oncogene ; 40(12): 2182-2199, 2021 03.
Artigo em Inglês | MEDLINE | ID: mdl-33627785

RESUMO

The PAX3-FOXO1 fusion protein is the key oncogenic driver in fusion positive rhabdomyosarcoma (FP-RMS), an aggressive soft tissue malignancy with a particularly poor prognosis. Identifying key downstream targets of PAX3-FOXO1 will provide new therapeutic opportunities for treatment of FP-RMS. Herein, we demonstrate that Forkhead Box F1 (FOXF1) transcription factor is uniquely expressed in FP-RMS and is required for FP-RMS tumorigenesis. The PAX3-FOXO1 directly binds to FOXF1 enhancers and induces FOXF1 gene expression. CRISPR/Cas9 mediated inactivation of either FOXF1 coding sequence or FOXF1 enhancers suppresses FP-RMS tumorigenesis even in the presence of PAX3-FOXO1 oncogene. Knockdown or genetic knockout of FOXF1 induces myogenic differentiation in PAX3-FOXO1-positive FP-RMS. Over-expression of FOXF1 decreases myogenic differentiation in primary human myoblasts. In FP-RMS tumor cells, FOXF1 protein binds chromatin near enhancers associated with FP-RMS gene signature. FOXF1 cooperates with PAX3-FOXO1 and E-box transcription factors MYOD1 and MYOG to regulate FP-RMS-specific gene expression. Altogether, FOXF1 functions downstream of PAX3-FOXO1 to promote FP-RMS tumorigenesis.


Assuntos
Carcinogênese/genética , Proteína Forkhead Box O1/genética , Fatores de Transcrição Forkhead/genética , Fator de Transcrição PAX3/genética , Rabdomiossarcoma/genética , Linhagem Celular Tumoral , Regulação Neoplásica da Expressão Gênica/genética , Humanos , Desenvolvimento Muscular/genética , Proteína MyoD/genética , Miogenina/genética , Rabdomiossarcoma/patologia
20.
Nat Commun ; 12(1): 6924, 2021 11 26.
Artigo em Inglês | MEDLINE | ID: mdl-34836971

RESUMO

Rhabdomyosarcoma (RMS) is a pediatric malignancy of skeletal muscle lineage. The aggressive alveolar subtype is characterized by t(2;13) or t(1;13) translocations encoding for PAX3- or PAX7-FOXO1 chimeric transcription factors, respectively, and are referred to as fusion positive RMS (FP-RMS). The fusion gene alters the myogenic program and maintains the proliferative state while blocking terminal differentiation. Here, we investigated the contributions of chromatin regulatory complexes to FP-RMS tumor maintenance. We define the mSWI/SNF functional repertoire in FP-RMS. We find that SMARCA4 (encoding BRG1) is overexpressed in this malignancy compared to skeletal muscle and is essential for cell proliferation. Proteomic studies suggest proximity between PAX3-FOXO1 and BAF complexes, which is further supported by genome-wide binding profiles revealing enhancer colocalization of BAF with core regulatory transcription factors. Further, mSWI/SNF complexes localize to sites of de novo histone acetylation. Phenotypically, interference with mSWI/SNF complex function induces transcriptional activation of the skeletal muscle differentiation program associated with MYCN enhancer invasion at myogenic target genes, which is recapitulated by BRG1 targeting compounds. We conclude that inhibition of BRG1 overcomes the differentiation blockade of FP-RMS cells and may provide a therapeutic strategy for this lethal childhood tumor.


Assuntos
Diferenciação Celular , Proliferação de Células , Desenvolvimento Muscular/fisiologia , Rabdomiossarcoma/genética , Rabdomiossarcoma/metabolismo , Linhagem Celular Tumoral , Criança , Cromatina , DNA Helicases/metabolismo , Epigenômica , Regulação Neoplásica da Expressão Gênica , Humanos , Músculo Esquelético , Proteínas Nucleares/metabolismo , Proteínas de Fusão Oncogênica/genética , Proteínas de Fusão Oncogênica/metabolismo , Fator de Transcrição PAX7 , Fatores de Transcrição Box Pareados/genética , Fatores de Transcrição Box Pareados/metabolismo , Proteômica , Fatores de Transcrição/metabolismo , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA