Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 99
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
BMC Biol ; 22(1): 33, 2024 Feb 08.
Artigo em Inglês | MEDLINE | ID: mdl-38331785

RESUMO

BACKGROUND: Ribosomal protein SA (RPSA) of human brain microvascular endothelial cells (HBMECs) can transfer from the cytosol to the cell surface and act as a receptor for some pathogens, including Streptococcus suis serotype 2 (SS2), a zoonotic pathogen causing meningitis in pigs and humans. We previously reported that SS2 virulence factor enolase (ENO) binds to RPSA on the cell surface of HBMECs and induces apoptosis. However, the mechanism that activates RPSA translocation to the cell surface and induces ENO-mediated HBMEC apoptosis is unclear. RESULTS: Here, we show that RPSA localization and condensation on the host cell surface depend on its internally disordered region (IDR). ENO binds to the IDR of RPSA and promotes its interaction with RPSA and vimentin (VIM), which is significantly suppressed after 1,6-Hexanediol (1,6-Hex, a widely used tool to disrupt phase separation) treatment, indicating that ENO incorporation and thus the concentration of RPSA/VIM complexes via co-condensation. Furthermore, increasing intracellular calcium ions (Ca2+) in response to SS2 infection further facilitates the liquid-like condensation of RPSA and aggravates ENO-induced HBMEC cell apoptosis. CONCLUSIONS: Together, our study provides a previously underappreciated molecular mechanism illuminating that ENO-induced RPSA condensation activates the migration of RPSA to the bacterial cell surface and stimulates SS2-infected HBMEC death and, potentially, disease progression. This study offers a fresh avenue for investigation into the mechanism by which other harmful bacteria infect hosts via cell surfaces' RPSA.


Assuntos
Infecções Estreptocócicas , Streptococcus suis , Humanos , Animais , Suínos , Células Endoteliais/metabolismo , Sorogrupo , Fosfopiruvato Hidratase/genética , Fosfopiruvato Hidratase/metabolismo , Encéfalo/metabolismo , Apoptose , Proteínas Ribossômicas/metabolismo , Infecções Estreptocócicas/metabolismo , Infecções Estreptocócicas/microbiologia
2.
Appl Environ Microbiol ; 90(4): e0119723, 2024 04 17.
Artigo em Inglês | MEDLINE | ID: mdl-38551353

RESUMO

Klebsiella pneumoniae, especially hypervirulent K. pneumoniae (hvKP), is a common opportunistic pathogen that often causes hospital- and community-acquired infections. Capsular polysaccharide (CPS) is an important virulence factor of K. pneumoniae. Some phages encode depolymerases that can recognize and degrade bacterial polysaccharides. In this study, the lytic bacteriophage vB_KpnP_ZK1 (abbreviated as ZK1) was isolated using serotype K1 hvKP as the host. Although amino acid sequence BLAST analysis indicated that the tail fiber protein Depo16 of phage ZK1 showed no significant similarity to any reported phage depolymerases, it displayed enzymatic activities that are characteristic of phage depolymerases. After expression and purification, Depo16 could efficiently remove the capsular polysaccharide layer that surrounds the surface of serotype K1 K. pneumoniae. Although no bactericidal activity was detected, Depo16 makes serotype K1 K. pneumoniae sensitive to peritoneal macrophages (PMs). In addition, in a mouse bacteremia model of serotype K1 K. pneumoniae, 25 µg of Depo16 was effective in significantly prolonging survival. Depo16 treatment can reduce the bacterial load in blood and major tissues and alleviate tissue damage in mice. This indicates that the putative depolymerase Depo16 is a potential antibacterial agent against serotype K1 K. pneumoniae infections.IMPORTANCEKlebsiella pneumoniae often causes hospital-acquired infections and community-acquired infections. Capsular polysaccharide (CPS) is one of the crucial virulence factors of K. pneumoniae. K1 and K2 capsular-type K. pneumoniae strains are the most prevalent serotypes of hypervirulent K. pneumoniae (hvKP). In this study, a novel K. pneumoniae phage named vB_KpnP_ZK1 was isolated, and its putative depolymerase Depo16 showed low homology with other reported phage depolymerases. Depo16 can specifically degrade the K. pneumoniae K1 capsule making this serotype sensitive to peritoneal macrophages. More importantly, Depo16 showed a significant therapeutic effect in a mouse bacteremia model caused by serotype K1 K. pneumoniae. Thus, Depo16 is a potential antibacterial agent to combat serotype K1 K. pneumoniae infections.


Assuntos
Bacteriemia , Bacteriófagos , Infecções Comunitárias Adquiridas , Infecções por Klebsiella , Animais , Camundongos , Klebsiella pneumoniae , Bacteriófagos/genética , Infecções por Klebsiella/terapia , Infecções por Klebsiella/microbiologia , Fatores de Virulência/metabolismo , Polissacarídeos Bacterianos , Antibacterianos
3.
Appl Environ Microbiol ; 90(8): e0046124, 2024 08 21.
Artigo em Inglês | MEDLINE | ID: mdl-39012099

RESUMO

Aerococcus viridans (A. viridans) is an important opportunistic zoonotic pathogen that poses a potential threat to the animal husbandry industry, such as cow mastitis, due to the widespread development of multidrug-resistant strains. Phage lysins have emerged as a promising alternative antibiotic treatment strategy. However, no lysins have been reported to treat A. viridans infections. In this study, the critical active domain and key active sites of the first A. viridans phage lysin AVPL were revealed. AVPL consists of an N-terminal N-acetylmuramoyl-L-alanine amidase catalytic domain and a C-terminal binding domain comprising two conserved LysM. H40, N44, E52, W68, H147, T157, F60, F64, I77, N92, Q97, H159, V160, D161, and S42 were identified as key sites for maintaining the activity of the catalytic domain. The LysM motif plays a crucial role in binding AVPL to bacterial cell wall peptidoglycan. AVPL maintains stable activity in the temperature range of 4-45°C and pH range of 4-10, and its activity is independent of the presence of metal ions. In vitro, the bactericidal effect of AVPL showed efficient bactericidal activity in milk samples, with 2 µg/mL of AVPL reducing A. viridans by approximately 2 Log10 in 1 h. Furthermore, a single dose (25 µg) of lysin AVPL significantly reduces bacterial load (approximately 2 Log10) in the mammary gland of mice, improves mastitis pathology, and reduces the concentration of inflammatory cytokines (TNF-α, IL-1ß, and IL-6) in mammary tissue. Overall, this work provides a novel alternative therapeutic drug for mastitis induced by multidrug-resistant A. viridans. IMPORTANCE: A. viridans is a zoonotic pathogen known to cause various diseases, including mastitis in dairy cows. In recent years, there has been an increase in antibiotic-resistant or multidrug-resistant strains of this pathogen. Phage lysins are an effective approach to treating infections caused by multidrug-resistant strains. This study revealed the biological properties and key active sites of the first A. viridans phage lysin named AVPL. AVPL can effectively kill multidrug-resistant A. viridans in pasteurized whole milk. Importantly, 25 µg AVPL significantly alleviates the symptoms of mouse mastitis induced by A. viridans. Overall, our results demonstrate the potential of lysin AVPL as an antimicrobial agent for the treatment of mastitis caused by A. viridans.


Assuntos
Aerococcus , Bacteriófagos , Infecções por Bactérias Gram-Positivas , Mastite , Animais , Feminino , Camundongos , Aerococcus/efeitos dos fármacos , Bacteriófagos/genética , Infecções por Bactérias Gram-Positivas/tratamento farmacológico , Infecções por Bactérias Gram-Positivas/microbiologia , Mastite/microbiologia , Mastite/tratamento farmacológico , Mastite/veterinária , Camundongos Endogâmicos BALB C , Modelos Animais de Doenças , Peptidoglicano/metabolismo , Terapia por Fagos , Proteínas Virais/metabolismo , Proteínas Virais/genética
4.
J Dairy Sci ; 106(12): 9174-9185, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37641240

RESUMO

Bovine mastitis is the most common and costly disease affecting dairy cattle throughout the world. Enterococcus faecalis is one of the environmental origin mastitis-causing pathogens. The treatment of bovine mastitis is primarily based on antibiotics. Due to the negative impact of developing antibiotic resistance and adverse effects on soil and water environments, the trend toward use of nonantibiotic treatments is increasing. Phages may represent a promising alternative treatment strategy. However, it is unknown whether phages have therapeutic effects on E. faecalis-induced mastitis. Thus, the objective of this study was to investigate the degree of protection conferred by a phage during murine mastitis caused by multidrug-resistant E. faecalis. Enterococcus faecalis was isolated from the milk of dairy cows with mastitis, and a phage was isolated using the E. faecalis isolates as hosts. The bactericidal ability of the phage against E. faecalis and the ability to prevent biofilm formation were determined in vitro. The therapeutic potential of the phage on murine mastitis was evaluated in vivo. We isolated 14 strains of E. faecalis from the milk of cows with mastitis, all of which exhibited multidrug resistance, and most (10/14) could form strong biofilms. Subsequently, a new phage (EF-N13) was isolated using the multidrug-resistant E. faecalis N13 (isolated from mastitic milk) as the host. The phage EF-N13 belongs to the family Myoviridae, which has short latent periods (5 min) and high bursts (284 pfu/cell). The genome of EF-N13 lacked bacterial virulence-, antibiotic resistance-, and lysogenesis-related genes. Furthermore, bacterial loading in the raw milk medium was significantly reduced by EF-N13 and was unaffected by potential IgG antibodies. In fact, EF-N13 could effectively prevent the formation of biofilm by multidrug-resistant E. faecalis. All of these characteristics suggest that EF-N13 has potential as mastitis therapy. In vivo, 1 × 105 cfu/gland of multidrug-resistant E. faecalis N13 resulted in mastitis development within 24 h. A single dose of phage EF-N13 (1 × 104, 1 × 105, or 1 × 106 pfu/gland) could significantly decrease bacterial counts in the mammary gland at 24 h postinfection. Histopathological observations demonstrated that treatment with phage EF-N13 effectively alleviated mammary gland inflammation and damage. This effect was confirmed by the lower levels of proinflammatory cytokines IL-6, IL-1ß, and tumor necrosis factor-α in the mammary gland treated with phage EF-N13 compared with those treated with phosphate-buffered saline. Overall, the data underscored the potential of phage EF-N13 as an alternative therapy for bovine mastitis caused by multidrug-resistant E. faecalis.


Assuntos
Bacteriófagos , Doenças dos Bovinos , Mastite Bovina , Animais , Bovinos , Feminino , Camundongos , Antibacterianos/uso terapêutico , Antibacterianos/farmacologia , Bacteriófagos/genética , Enterococcus faecalis , Mastite Bovina/terapia , Mastite Bovina/microbiologia
5.
Int J Mol Sci ; 24(23)2023 Nov 23.
Artigo em Inglês | MEDLINE | ID: mdl-38068990

RESUMO

Streptococcus suis (S. suis) is a swine pathogen that can cause sepsis, meningitis, endocarditis, and other infectious diseases; it is also a zoonotic pathogen that has caused a global surge in fatal human infections. The widespread prevalence of multidrug-resistant S. suis strains and the decline in novel antibiotic candidates have necessitated the development of alternative antimicrobial agents. In this study, AVPL, the Aerococcus viridans (A. viridans) phage lysin, was found to exhibit efficient bactericidal activity and broad lytic activity against multiple serotypes of S. suis. A final concentration of 300 µg/mL AVPL reduced S. suis counts by 4-4.5 log10 within 1 h in vitro. Importantly, AVPL effectively inhibited 48 h S. suis biofilm formation and disrupted preformed biofilms. In a mouse model, 300 µg/mouse AVPL protected 100% of mice from infection following the administration of lethal doses of multidrug-resistant S. suis type 2 (SS2) strain SC19, reduced the bacterial load in different organs, and effectively alleviated inflammation and histopathological damage in infected mice. These data suggest that AVPL is a valuable candidate antimicrobial agent for treating S. suis infections.


Assuntos
Aerococcus , Bacteriemia , Bacteriófagos , Infecções Estreptocócicas , Streptococcus suis , Animais , Suínos , Humanos , Camundongos , Infecções Estreptocócicas/tratamento farmacológico , Infecções Estreptocócicas/microbiologia , Bacteriemia/microbiologia , Modelos Animais de Doenças
6.
Microb Pathog ; 167: 105556, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35489635

RESUMO

Outer membrane proteins (OMPs) play an important role in bacterial fitness costs. Derived from the interaction between Klebsiella pneumoniae K7 and phage GH-K3, K7RB is an outer membrane porin-deficient phage-resistant mutant strain triggered by ompC712 deletion, exhibits expression inhibition of OmpC, OmpN, KPN_02430 and OmpF, but its fitness costs and regulatory mechanism remains unknown. In this study, compared with K7, K7RB showed almost unaffected growth rate, slightly decreased virulence, and increased resistance to some antibiotics. Transcriptome analysis showed that the pathways of glycerolipid metabolism and nitrogen metabolism in K7RB were significantly inhibited, while the transcription of permeases belonging to ABC transporters tended to be active, nutrient uptakes such as citrate and phenylalanine were also enhanced. However, transcriptional up-regulation in K7RB was inhibited by overexpression of OmpC, OmpN, KPN_02430 and OmpF in general. Overexpression of OmpN, KPN_02430 and OmpF, respectively, restoring the sensitivity of strains to antibiotics to varying degrees, while OmpC overexpression aggravated the bacterial drug-resistance especially to ß-lactam antibiotics. Besides, unlike OmpC and OmpF, overexpression of OmpN and KPN_02430 reduced bacterial virulence. In brief, by revealing the limited fitness costs of phage-resistant mutant K. pneumoniae with porin-deficiency, our study providing a reference for the design and development of drugs to inhibit the ways of bacterial metabolic rewiring and to increase fitness costs.


Assuntos
Bacteriófagos , Klebsiella pneumoniae , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Proteínas da Membrana Bacteriana Externa/genética , Proteínas da Membrana Bacteriana Externa/metabolismo , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Bacteriófagos/genética , Bacteriófagos/metabolismo , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Mutação , Porinas/genética , Porinas/metabolismo
7.
BMC Cancer ; 22(1): 864, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35941558

RESUMO

BACKGROUND: IFN-γ has been traditionally recognized as an inflammatory cytokine that involves in inflammation and autoimmune diseases. Previously we have shown that sustained IFN-γ induced malignant transformation of bovine mammary epithelial cells (BMECs) via arginine depletion. However, the molecular mechanism underlying this is still unknown. METHODS: In this study, the amino acids contents in BMECs were quantified by a targeted metabolomics method. The acquisition of differentially expressed genes was mined from RNA-seq dataset and analyzed bioinformatically. Quantitative reverse transcription polymerase chain reaction (qRT-PCR), enzyme-linked immunosorbent assay (ELISA), western blotting, and immunohistochemistry (IHC) assay were performed to detect gene mRNA and protein expression levels. CCK-8 and would healing assays were used to detect cell proliferation and migration abilities, respectively. Cell cycle phase alternations were analyzed by flow cytometry. RESULTS: The targeted metabolomics analysis specifically discovered IFN-γ induced arginine depletion through accelerating arginine catabolism and inhibiting arginine anabolism in BMECs. Transcriptome analysis identified leucine aminopeptidase 3 (LAP3), which was regulated by p38 and ERK MAPKs, to downregulate arginine level through interfering with argininosuccinate synthetase (ASS1) as IFN-γ stimulated. Moreover, LAP3 also contributed to IFN-γ-induced malignant transformation of BMECs by upregulation of HDAC2 (histone deacetylase 2) expression and promotion of cell cycle proteins cyclin A1 and D1 expressions. Arginine supplementation did not affect LAP3 and HDAC2 expressions, but slowed down cell cycle process of malignant BMECs. In clinical samples of patients with breast cancer, LAP3 was confirmed to be upregulated, while ASS1 was downregulated compared with healthy control. CONCLUSIONS: These results demonstrated that LAP3 mediated IFN-γ-induced arginine depletion to malignant transformation of BMECs. Our findings provide a potential therapeutic target for breast cancer both in humans and dairy cows.


Assuntos
Arginina , Neoplasias da Mama , Leucil Aminopeptidase/metabolismo , Animais , Arginina/metabolismo , Argininossuccinato Sintase/metabolismo , Mama/metabolismo , Neoplasias da Mama/metabolismo , Bovinos , Transformação Celular Neoplásica/genética , Transformação Celular Neoplásica/metabolismo , Células Epiteliais/metabolismo , Feminino , Humanos , Interferon gama/metabolismo
8.
Microb Cell Fact ; 21(1): 114, 2022 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-35698139

RESUMO

Aeromonas veronii (A. veronii) is a pathogenic that can infect human, animal and aquatic organisms, in which poses a huge threat to the health of many aquatic organisms such as Cyprinus carpio. In this study, Lactobacillus casei (L. casei) strain CC16 was used as antigen deliver carrier and fused with cholera toxin B subunit (CTB) as an adjuvant to construct the recombinant L. casei pPG-Aha1/Lc CC16(surface-displayed) and pPG-Aha1-CTB/Lc CC16(surface-displayed) expressing Aha1 protein of A. veronii, respectively. And the immune responses in Cyprinus carpio by oral route was explored. Our results demonstrated that the recombinant strains could stimulate high serum specific antibody immunoglobulin M (IgM) and induce a stronger acid phosphatase (ACP), alkaline phosphatase (AKP), C3, C4, lysozyme (LZM), Lectin and superoxide dismutase (SOD) activity in Cyprinus carpio compared with control groups. Meanwhile, the expression of Interleukin-10 (IL-10), Interleukin-1ß (IL-1ß), Tumor Necrosis Factor-α (TNF-α), immunoglobulin Z1 (IgZ1) and immunoglobulin Z2 (IgZ2) in the tissues were significantly upregulated compared with Lc-pPG or PBS groups, indicating that humoral and cell immune response were triggered. Additionally, recombinant L. casei could survive and colonize in fish intestine. Significantly, recombinant L. casei provides immune protection against A. veronii infection, which Cyprinus carpio received pPG-Aha1-CTB/Lc CC16 (64.29%) and pPG-Aha1/Lc CC16 (53.57%) had higher survival rates compared with the controls. Thus, we demonstrated that recombinant pPG-Aha1/Lc CC16 and pPG-Aha1-CTB/Lc CC16 may be the promising strategy for the development of an oral vaccine against A. veronii.


Assuntos
Carpas , Doenças dos Peixes , Lacticaseibacillus casei , Adjuvantes Imunológicos , Aeromonas veronii/genética , Animais , Vacinas Bacterianas , Doenças dos Peixes/prevenção & controle , Lacticaseibacillus casei/genética , Vacinação
9.
Vet Res ; 52(1): 30, 2021 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-33618766

RESUMO

Host proteins interacting with pathogens are receiving more attention as potential therapeutic targets in molecular medicine. Streptococcus suis serotype 2 (SS2) is an important cause of meningitis in both humans and pigs worldwide. SS2 Enolase (Eno) has previously been identified as a virulence factor with a role in altering blood brain barrier (BBB) integrity, but the host cell membrane receptor of Eno and The mechanism(s) involved are unclear. This study identified that SS2 Eno binds to 40S ribosomal protein SA (RPSA) on the surface of porcine brain microvascular endothelial cells leading to activation of intracellular p38/ERK-eIF4E signalling, which promotes intracellular expression of HSPD1 (heat-shock protein family D member 1), and initiation of host-cell apoptosis, and increased BBB permeability facilitating bacterial invasion. This study reveals novel functions for the host-interactional molecules RPSA and HSPD1 in BBB integrity, and provides insight for new therapeutic strategies in meningitis.


Assuntos
Barreira Hematoencefálica , Células Endoteliais/metabolismo , Fosfopiruvato Hidratase/metabolismo , Proteínas Ribossômicas/metabolismo , Infecções Estreptocócicas/veterinária , Streptococcus suis/metabolismo , Animais , Apoptose , Técnicas de Cocultura , Células Endoteliais/microbiologia , Fator de Iniciação 4E em Eucariotos/genética , Fator de Iniciação 4E em Eucariotos/metabolismo , MAP Quinases Reguladas por Sinal Extracelular/genética , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Regulação da Expressão Gênica , Proteínas de Choque Térmico/genética , Proteínas de Choque Térmico/metabolismo , Camundongos , Ligação Proteica , Sorogrupo , Infecções Estreptocócicas/microbiologia , Infecções Estreptocócicas/patologia , Streptococcus suis/patogenicidade , Suínos , Doenças dos Suínos/microbiologia , Proteínas Quinases p38 Ativadas por Mitógeno/genética , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
10.
Foodborne Pathog Dis ; 18(8): 574-581, 2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-32955931

RESUMO

Listeria monocytogenes is an important foodborne pathogen that is a serious threat to public health security, and new strategies to control this bacterium in food are needed. HolGH15, derived from Staphylococcus aureus phage GH15, has shown antibacterial activity against several bacterial species. In this work, the antilisterial behavior and effectiveness of HolGH15 are further studied. To elucidate its antimicrobial modes against L. monocytogenes, cell integrity and membrane permeabilization assays were performed. When treated with HolGH15, the release of 260-nm-absorbing materials of L. monocytogenes was rapidly increased. HolGH15 triggered a significant increase in fluorescence intensity by flow cytometry. In membrane permeabilization assays, the cytoplasmic ß-galactosidase of L. monocytogenes treated with HolGH15 was released via an increase in the permeability of the membrane. HolGH15 caused changes in the structural properties of L. monocytogenes cells resulting in shrinkage, which evoked the release and removal of cellular contents and finally lead to cell death. Electron microscopy observations indicated that HolGH15 exhibited excellent bactericidal potency by permeabilizing the cell membrane, damaging membrane integrity, and inducing cellular content shrinkage or loss. Moreover, HolGH15 (at the final concentration of 240 µg/mL) reduced L. monocytogenes (at the initial concentration of 106 colony-forming unit/mL) to an undetectable level at 4°C. Collectively, HolGH15 has potential as a novel antimicrobial agent against L. monocytogenes in the manufacture and store of food by spraying or soaking, especially at refrigerated temperature.


Assuntos
Antibacterianos/farmacologia , Microbiologia de Alimentos/métodos , Listeria monocytogenes/efeitos dos fármacos , Terapia por Fagos/métodos , Fagos de Staphylococcus , Testes de Sensibilidade Microbiana , Staphylococcus aureus
11.
Appl Environ Microbiol ; 86(22)2020 10 28.
Artigo em Inglês | MEDLINE | ID: mdl-32887718

RESUMO

Salmonella enterica subsp. enterica serovar Abortusequi is a frequently reported pathogen causing abortion in mares. In this study, the preventive and therapeutic effects of phage PIZ SAE-01E2 against S Abortusequi in a mouse model of abortion were investigated. Phage PIZ SAE-01E2 was stable at different temperatures (4 to 70°C) and pH values (pH 4 to 10) and could lyse the majority of the Salmonella serogroup O:4 and O:9 strains tested (25/28). There was no lysogeny-related, toxin, or antibiotic resistance-related gene in the genome of PIZ SAE-01E2. All of these characteristics indicate that PIZ SAE-01E2 has the potential for use in phage therapy. In in vivo experiments, 2 × 103 CFU/mouse of S Abortusequi ATCC 9842 was sufficient to lead to murine abortion (gestational day 14.5) within 48 h. A single intraperitoneal inoculation of PIZ SAE-01E2 (108 PFU/mouse, multiplicity of infection = 105) 1 h before or after S Abortusequi challenge provided effective protection to all pregnant mice (10/10). After 24 h of treatment with phage PIZ SAE-01E2, the bacterial loads in both the placenta and the uterus of the infected mice were significantly decreased (<102 CFU/g) compared to those in the placenta and the uterus of the mice in the control group (>106 CFU/g). In addition, the levels of inflammatory cytokines in the placenta and blood of the mice in the phage administration groups were significantly reduced (P < 0.05) compared to those in the placenta and blood of the mice in the control group. Altogether, these findings indicate that PIZ SAE-01E2 shows the potential to block abortions induced by S Abortusequi in vivoIMPORTANCES Abortusequi is an important pathogen that can induce abortions in mares. Although S Abortusequi has been well controlled in Europe and the United States due to strict breeding and health policies, it is still widespread in African and Asian countries and has proven difficult to control. In China, abortions caused by S Abortusequi have also been reported in donkeys. So far, there is no commercial vaccine. Thus, exploiting alternative efficient and safe strategies to control S Abortusequi infection is essential. In this study, a new lytic phage, PIZ SAE-01E2, infecting S Abortusequi was isolated, and the characteristics of PIZ SAE-01E2 indicated that it has the potential for use in phage therapy. A single intraperitoneal inoculation of PIZ SAE-01E2 before or after S Abortusequi challenge provided effective protection to all pregnant mice. Thus, PIZ SAE-01E2 showed the potential to block abortions induced by S Abortusequi in vivo.


Assuntos
Aborto Animal/prevenção & controle , Bacteriófagos/fisiologia , Doenças dos Cavalos/prevenção & controle , Salmonelose Animal/prevenção & controle , Salmonella/fisiologia , Aborto Animal/microbiologia , Aborto Animal/virologia , Animais , Feminino , Doenças dos Cavalos/microbiologia , Doenças dos Cavalos/virologia , Cavalos , Camundongos , Camundongos Endogâmicos ICR , Gravidez , Salmonelose Animal/microbiologia , Salmonelose Animal/virologia
12.
Microb Pathog ; 142: 104048, 2020 Feb 05.
Artigo em Inglês | MEDLINE | ID: mdl-32035104

RESUMO

The emergence and spread of antibiotic-resistant bacteria constitute a critical issue for modern medicine. Patients with antibiotic-resistant bacterial infections consume more healthcare resources and have worse clinical outcomes than patients with antibiotic-sensitive bacterial infections. Phages are natural predators of bacteria and may therefore be a source of useful antibacterial drugs. Phage therapy possess availability for oral administration, penetration through the bacteria cell wall, and eradication bacterial biofilms. All of these advantages give phage therapy the possibility to turn into applications for infectious diseases. In this mini-review, we focus on the brief history of lytic phage therapy, the life cycles of lytic phages and the therapeutic effects of lytic phages.

13.
Virus Genes ; 56(4): 498-507, 2020 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-32449140

RESUMO

Acinetobacter pittii is an important pathogen causing nosocomial infection worldwide. In this study, a multidrug-resistant A. pittii ABC38 was used as host bacterium to isolate the lytic phage vB_ApiP_XC38. The biological characteristics of vB_ApiP_XC38 were studied and the genome was sequenced and analyzed. vB_ApiP_XC38 belonged to Podoviridae family. The phage had double-stranded genome, which comprised 79,328 bp with 39.58% G+C content displaying very low similarity (< 1% identity) with published genomes of other phages and bacteria. A total of 97 open reading frames (ORFs) were predicted and contained nucleotide metabolism and replication module, structural components module, and lysis module. The ANI, AAI, and phylogenetic analysis indicated that all phages were found distant from vB_ApiP_XC38. Altogether, morphological, genomics, and phylogenetic analysis suggest that vB_ApiP_XC38 is more likely a novel phage of A. pittii.


Assuntos
Acinetobacter/virologia , Bacteriófagos/genética , Genoma Viral/genética , Podoviridae/genética , Acinetobacter/genética , Composição de Bases/genética , DNA Viral/genética , Genômica , Fases de Leitura Aberta/genética , Filogenia
14.
Virus Genes ; 55(5): 696-706, 2019 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-31254238

RESUMO

Bacteriophages have been recently revisited as an alternative biocontrol tool due to the limitations of antibiotic treatment. In this study, we reported on the biological characteristics and genomic information of vB_KpnS_GH-K3 (abbreviated as GH-K3), a Klebsiella phage of the Siphoviridae family, which was previously isolated from a hospital sewage system. One-step growth curve analysis indicated that the burst size of GH-K3 was 291 PFU/cell. GH-K3 maintained a stable titer in a broad range of pH values (6-10) and temperature (up to 50 °C). Based on bioinformatics analysis, GH-K3 comprises of 49,427 bp containing a total of 77 open reading frames (ORFs), which share high degree of nucleotide similarity and close evolutionary relationships with at least 12 other Klebsiella phages. Of note, GH-K3 gp32 was identified as a unique ORF. The major segment of gp32 sequence at the C-terminus (residues 351-907) was found highly variable as determined by its mismatch with the nucleotide and protein sequences available at NCBI database. Furthermore, HHpred analysis indicated that GH-K3 gp32 contains three domains (PDB ID: 5W6S_A, 3GQ8_A and 1BHE_A) similar to depolymerase (depoKP36) of Klebsiella phage KP36 suggestive of a potential depolymerase activity during host receptor-binding in the processes of phage infection. Altogether, the current data revealed a novel putative depolymerase-like protein which is most likely to play an important role in phage-host interaction.


Assuntos
Bacteriófagos/crescimento & desenvolvimento , Klebsiella/virologia , Bacteriófagos/efeitos dos fármacos , Bacteriófagos/genética , Bacteriófagos/efeitos da radiação , Genoma Viral , Concentração de Íons de Hidrogênio , Viabilidade Microbiana/efeitos dos fármacos , Viabilidade Microbiana/efeitos da radiação , Fases de Leitura Aberta , Homologia de Sequência , Sintenia , Temperatura , Carga Viral , Proteínas Virais/genética
15.
Appl Environ Microbiol ; 84(21)2018 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-30171001

RESUMO

Bacteriophage can be used as an alternative or complementary therapy to antibiotics for treating multidrug-resistant bacterial infections. However, the rapid emergence of resistant host variants during phage treatment has limited its therapeutic applications. In this study, a potential phage-resistant mechanism of Klebsiella pneumoniae was revealed. After phage GH-K3 treatment, a smooth-type colony, named K7RB, was obtained from the K. pneumoniae K7 culture. Treatment with IO4- and/or proteinase K indicated that polysaccharides of K7 played an important role in phage recruitment, and protein receptors on K7 were essential for effective infection by GH-K3. Differences in protein expression between K7 and K7RB were quantitatively analyzed by liquid chromatography-tandem mass spectrometry. Among differentially expressed proteins, OmpC, OmpN, KPN_02430, and OmpF were downregulated significantly in K7RBtrans-Complementation of OmpC in K7RB conferred rapid adsorption and sensitivity to GH-K3. In contrast, a single-base deletion mutation of ompC in K7, which resulted in OmpC silencing, led to lower adsorption efficiency and resistance to GH-K3. These assays proved that OmpC is the key receptor-binding protein for GH-K3. In addition, the native K. pneumoniae strains KPP14, KPP27, and KPP36 showed low or no sensitivity to GH-K3. However, these strains became more sensitive to GH-K3 after their native receptors were replaced by OmpC of K7, suggesting that OmpCK7 was the most suitable receptor for GH-K3. This study revealed that K7RB became resistant to GH-K3 due to gene mutation of ompC and that OmpC of K7 is essential for effective infection by GH-K3.IMPORTANCE With increased incidence of multidrug-resistant (MDR) bacterial strains, phages have regained attention as promising potential antibacterial agents. However, the rapid emergence of resistant variants during phage treatment has limited the therapeutic applications of phage. According to our trans-complementation, ompC mutation, and phage adsorption efficiency assays, we identified OmpC as the key receptor-binding protein (RBP) for phage GH-K3, which is essential for effective infection. This study revealed that the phage secondary receptor of K. pneumoniae, OmpC, is the essential RBP not only for phage infecting Gram-negative bacteria, such as Escherichia coli and Salmonella, but also for K. pneumoniae.


Assuntos
Bacteriófagos/fisiologia , Klebsiella pneumoniae/virologia , Porinas/metabolismo , Receptores Virais/metabolismo , Sequência de Aminoácidos , Klebsiella pneumoniae/genética , Klebsiella pneumoniae/metabolismo , Mutação , Porinas/genética , Receptores Virais/genética , Ligação Viral
16.
Appl Environ Microbiol ; 84(15)2018 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-29776929

RESUMO

Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we observed the ability of the phage lysin LysGH15 to eliminate staphylococcal planktonic cells and biofilms formed by Staphylococcus aureus, Staphylococcus epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis All these strains were sensitive to LysGH15, showing reductions in bacterial counts of approximately 4 log units within 30 min after treatment with 20 µg/ml of LysGH15, and the MICs ranged from 8 µg/ml to 32 µg/ml. LysGH15 efficiently prevented biofilm formation by the four staphylococcal species at a dose of 50 µg/ml. At a higher dose (100 µg/ml), LysGH15 also showed notable disrupting activity against 24-h and 72-h biofilms formed by S. aureus and coagulase-negative species. In the in vivo experiments, a single intraperitoneal injection of LysGH15 (20 µg/mouse) administered 1 h after the injection of S. epidermidis at double the minimum lethal dose was sufficient to protect the mice. The S. epidermidis cell counts were 4 log units lower in the blood and 3 log units lower in the organs of mice 24 h after treatment with LysGH15 than in the untreated control mice. LysGH15 reduced cytokine levels in the blood and improved pathological changes in the organs. The broad antistaphylococcal activity exerted by LysGH15 on planktonic cells and biofilms makes LysGH15 a valuable treatment option for biofilm-related or non-biofilm-related staphylococcal infections.IMPORTANCE Most staphylococcal species are major causes of health care- and community-associated infections. In particular, Staphylococcus aureus is a common and dangerous pathogen, and Staphylococcus epidermidis is a ubiquitous skin commensal and opportunistic pathogen. Treatment of infections caused by staphylococci has become more difficult because of the emergence of multidrug-resistant strains as well as biofilm formation. In this study, we found that all tested S. aureus, S. epidermidis, Staphylococcus haemolyticus, and Staphylococcus hominis strains were sensitive to the phage lysin LysGH15 (MICs ranging from 8 to 32 µg/ml). More importantly, LysGH15 not only prevented biofilm formation by these staphylococci but also disrupted 24-h and 72-h biofilms. Furthermore, the in vivo efficacy of LysGH15 was demonstrated in a mouse model of S. epidermidis bacteremia. Thus, LysGH15 exhibits therapeutic potential for treating biofilm-related or non-biofilm-related infections caused by diverse staphylococci.


Assuntos
Biofilmes , Terapia por Fagos , Plâncton/fisiologia , Plâncton/virologia , Infecções Estafilocócicas/terapia , Fagos de Staphylococcus/fisiologia , Staphylococcus/fisiologia , Staphylococcus/virologia , Animais , Bacteriemia/microbiologia , Bacteriemia/terapia , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Plâncton/genética , Plâncton/crescimento & desenvolvimento , Infecções Estafilocócicas/microbiologia , Staphylococcus/genética , Staphylococcus/crescimento & desenvolvimento
17.
Virus Genes ; 54(3): 446-456, 2018 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-29564689

RESUMO

Salmonella pullorum is the major pathogen that is harmful to the poultry industry in developing countries, and the treatment of chicken diarrhea caused by S. pullorum has become increasingly difficult. In this study, a virulent bacteriophage YSP2, which was able to specifically infect Salmonella, was isolated and characterized. Phage YSP2 was classified in the Siphoviridae family and had a short latent period of 10 min. No bacterial virulence- or lysogenesis-related ORF is present in the YSP2 genome, making it eligible for use in phage therapy. Experiments in vivo investigated the potential use of phages as a therapy against diarrhea in chickens caused by S. pullorum in a chicken diarrhea model, demonstrating that a single oral administration of YSP2 (1 × 1010 PFU/mL, 80 µL/chicken) 2 h after S. pullorum oral administration at a double median lethal dose was sufficient to protect chickens against diarrhea. Gross inspection showed that YSP2 can effectively reduce organ damage and significantly relieve hemorrhage in the intestine and liver tissue. Moreover, YSP2 can maintain a high curative effect when diluted to 108 PFU/mL. In light of its therapeutic effect on chicken diarrhea, YSP2 may serve as an alternative treatment strategy for infections caused by S. pullorum.


Assuntos
Galinhas , Diarreia/veterinária , Terapia por Fagos/veterinária , Doenças das Aves Domésticas/terapia , Salmonelose Animal/terapia , Fagos de Salmonella/isolamento & purificação , Animais , Diarreia/terapia , Feminino , Genoma Viral , Masculino , Salmonella , Fagos de Salmonella/fisiologia
18.
Appl Microbiol Biotechnol ; 102(2): 971-983, 2018 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-29150707

RESUMO

In recent years, after the emergence of a large number of multidrug-resistant bacteria, phages and phage-associated products for the prevention and control of bacterial disease have revealed prominent advantages as compared with antibiotics. However, bacteria are susceptible to becoming phage-resistant, thus severely limiting the application of phage therapy. In this study, Escherichia coli cells were incubated with lytic bacteriophages to obtain mutants that were resistant to the lytic phages. Then, bacteriophages against the phage-resistant variants were isolated and subsequently mixed with the original lytic phage to prepare a novel phage cocktail for bactericidal use. The data showed that our phage cocktail not only had notable bactericidal effects, including a widened host range and rapid lysis, but also decreased the generation and mutation frequency of phage-resistant strains in vitro. In addition, we tested our cocktail in a murine bacteremia model. The results suggested that compared with the single phage, fewer phage-resistant bacteria appeared during the treatment of phage cocktail, thus prolonging the usable time of the phage cocktail and improving its therapeutic effect in phage applications. Importantly, our preparation method of phage cocktail was proved to be generalizable. Because the bacteriophage against the phage-resistant strain is an ideal guard that promptly attacks potential phage resistance, this guard-killer dual-function phage cocktail provides a novel strategy for phage therapy that allows the natural ecology to be sustained.


Assuntos
Bacteriólise , Bacteriófagos/fisiologia , Infecções por Escherichia coli/terapia , Escherichia coli/virologia , Terapia por Fagos , Animais , Escherichia coli/patogenicidade , Especificidade de Hospedeiro , Camundongos , Taxa de Mutação
19.
Antonie Van Leeuwenhoek ; 111(12): 2371-2384, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30008077

RESUMO

Actinobacillus pleuropneumoniae is the cause of porcine pleuropneumonia, for which the mortality rate is high. Host peripheral blood is a body site for the immune clearance of pathogens mediated by release of inflammatory factors. However, "out of control" inflammatory factor release can contribute to host death. To further understand the changes in the transcription level of immune-related effectors, samples of peripheral blood mononuclear cells (PBMCs) collected from piglets at different stages of infection (0, 24 and 120 h) were sequenced on an Illumina HiSeq™ 4000 platform. We found 3818 differentially expressed genes (DEGs) in the 24 h-infection group compared to the 0 h-infection group (Pb24-Vs-Pb0). DEGs mainly involved in the Gene ontology and KEGG pathways that included nucleic acid metabolism regulation, cell growth, cell differentiation, and organ morphological maintenance were not significantly enriched (P > 0.05). However, DEGs associated with protein kinase activity, receptor activation, metabolism, local adhesion and immune inflammatory responses were significantly enriched in Pb120-Vs-Pb24 (P < 0.05), as were those related to the T cell receptor signalling pathway, with most being down-regulated compared to the preceding stage (Pb24-Vs-Pb0). In PBMCs there were some changes in glucose metabolism, local adhesion and the immune inflammatory response (Pb120-Vs-Pb0). In addition, up-regulated DEGs, such as IL8, IL1ß, and CCL2, and were significantly enriched in immune-inflammatory related pathways compared to the uninfected stage, although they began to decline after 24 h.


Assuntos
Infecções por Actinobacillus/veterinária , Actinobacillus pleuropneumoniae/fisiologia , Leucócitos Mononucleares/imunologia , Pleuropneumonia/veterinária , Doenças dos Suínos/genética , Infecções por Actinobacillus/genética , Infecções por Actinobacillus/imunologia , Infecções por Actinobacillus/microbiologia , Animais , Feminino , Perfilação da Expressão Gênica , Leucócitos Mononucleares/microbiologia , Masculino , Pleuropneumonia/genética , Pleuropneumonia/imunologia , Pleuropneumonia/microbiologia , Suínos , Doenças dos Suínos/imunologia , Doenças dos Suínos/microbiologia
20.
Antonie Van Leeuwenhoek ; 110(12): 1627-1635, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28730370

RESUMO

Multidrug-resistant Escherichia coli has seriously threatened antibiotic resources and international public health. Bacteriophage lysin preparations have been widely considered as valid agents for solving multidrug resistances. Many lysins have been derived to treat diseases caused by Gram-positive bacteria, but only a few lysin preparations have been found that successively treat diseases caused by Gram-negative bacteria. The outer membrane of Gram-negative bacteria effectively blocks the interactions between peptidoglycan in the periplasmic space and bacteriophage lysins, which therefore hampers the antimicrobial effects of bacteriophage lysins. In this study, a new fusion protein (Colicin-Lysep3) was constructed by fusing the translocation and receptor binding domains of colicin A with an E. coli phage lysin, which endows Colicin-Lysep3 bactericidal activity against E. coli from outside of Gram-negative bacteria. These results show that Colicin-Lysep3 could lyse the E. coli broadly in vitro and significantly reduce the number of E. coli in an intestinal infection mouse model. Overall, our findings first demonstrated that a colicin A fragment could enable a bacteriophage lysin to lyse E. coli from the outside, promoting the application of phage lysin preparations in control of Gram-negative bacteria.


Assuntos
Bacteriólise , Colicinas/metabolismo , Escherichia coli/virologia , Proteínas Virais/metabolismo , Animais , Colicinas/química , Colicinas/genética , Colífagos/fisiologia , Enterite/microbiologia , Infecções por Escherichia coli/microbiologia , Camundongos , Domínios Proteicos , Proteínas Virais/química , Proteínas Virais/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA