Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Assunto da revista
País de afiliação
Intervalo de ano de publicação
1.
Entropy (Basel) ; 25(4)2023 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-37190481

RESUMO

An optimized Schwarz domain decomposition method (DDM) for solving the local optical response model (LORM) is proposed in this paper. We introduce a hybridizable discontinuous Galerkin (HDG) scheme for the discretization of such a model problem based on a triangular mesh of the computational domain. The discretized linear system of the HDG method on each subdomain is solved by a sparse direct solver. The solution of the interface linear system in the domain decomposition framework is accelerated by a Krylov subspace method. We study the spectral radius of the iteration matrix of the Schwarz method for the LORM problems, and thus propose an optimized parameter for the transmission condition, which is different from that for the classical electromagnetic problems. The numerical results show that the proposed method is effective.

2.
ScientificWorldJournal ; 2014: 709358, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24772027

RESUMO

Recently, extensive researches on estimating the value of e have been studied. In this paper, the structural characteristics of I. Schur type inequalities are exploited to generalize the corresponding inequalities by variable parameter techniques. Some novel upper and lower bounds for the I. Schur inequality have also been obtained and the upper bounds may be obtained with the help of Maple and automated proving package (Bottema). Numerical examples are employed to demonstrate the reliability of the approximation of these new upper and lower bounds, which improve some known results in the recent literature.


Assuntos
Algoritmos , Matemática , Modelos Teóricos , Reprodutibilidade dos Testes
3.
Springerplus ; 5(1): 1109, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27478726

RESUMO

In this paper, an implicit finite difference scheme with the shifted Grünwald formula, which is unconditionally stable, is used to discretize the fractional diffusion equations with constant diffusion coefficients. The coefficient matrix possesses the Toeplitz structure and the fast Toeplitz matrix-vector product can be utilized to reduce the computational complexity from [Formula: see text] to [Formula: see text], where N is the number of grid points. Two preconditioned iterative methods, named bi-conjugate gradient method for Toeplitz matrix and bi-conjugate residual method for Toeplitz matrix, are proposed to solve the relevant discretized systems. Finally, numerical experiments are reported to show the effectiveness of our preconditioners.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA