Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
J Am Chem Soc ; 146(11): 7480-7486, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38446414

RESUMO

In this work, a novel π-extended thio[7]helicene scaffold was synthesized, where the α-position of the thiophene unit could be functionalized with bulky phenoxy radicals after considerable synthetic attempts. This open-shell helical diradical, ET7H-R, possesses high stability in the air, nontrivial π conjugation, persistent chirality, and a high diradical character (y0 of 0.998). The key feature is a predominant through-space spin-spin coupling (TSC) between two radicals at the helical terminals. Variable-temperature continuous-wave electron spin resonance (cw-ESR) and superconducting quantum interference device (SQUID) magnetometry in the solid state reveal a singlet ground state with a nearly degenerate triplet state of ET7H-R. These results highlight the significance of a stable helical diradicaloid as a promising platform for investigating intramolecular TSCs.

2.
Small ; : e2405472, 2024 Oct 04.
Artigo em Inglês | MEDLINE | ID: mdl-39367552

RESUMO

Supramolecular materials provide a pathway for achieving precise, highly ordered structures while exhibiting remarkable response to external stimuli, a characteristic not commonly found in covalently bonded materials. The design of self-assembled materials, where properties could be predicted/design from chemical nature of the individual building blocks, hinges upon our ability to relate macroscopic properties to individual building blocks - a feat which has thus far remained elusive. Here, a design approach is demonstrated to chemically engineer the thermal expansion coefficient of 2D supramolecular networks by over an order of magnitude (\boldmath 120 to \boldmath 1000 × 10-6 K-1). This systematic study provides a clear pathway on how to carefully design the thermal expansion coefficient of a 2D molecular assembly. Specifically, a linear relation has been identified between the length of decorating alkyl chains and the thermal expansion coefficient. Counter-intuitively, the shorter the chains the larger is the thermal expansion coefficient. This precise control over thermo-mechanical properties marks a significant leap forward in the de-novo design of advanced 2D materials. The possibility to chemically engineer their thermo-mechanical properties holds promise for innovations in sensors, actuators, and responsive materials across diverse fields.

3.
Angew Chem Int Ed Engl ; : e202417129, 2024 Oct 24.
Artigo em Inglês | MEDLINE | ID: mdl-39449108

RESUMO

Anthracene has served as an important building block of conjugated polymers with the connecting positions playing a crucial role for the electronic structures. Herein, anthracene units have been coupled through their 2,7-carbons to develop an unprecedented, conjugated polymer, namely, poly(2,7-anthrylene) featuring additional peri-fused porphyrin edges. The synthesis starts from a 2,7-dibromo-9-nickel(II) porphyrinyl-anthracene as the pivotal precursor. Polymerization is achieved by an AA-type Yamamoto coupling, followed by a polymer-analogous oxidative cyclodehydrogenation to obtain a peri-fusion between porphyrin and anthracene moieties. Although further cyclodehydrogenation between the repeating units cannot be achieved in solution, the thermal treatment of the precursor polymer derived from 2,7-dibromo-9-porphyrinyl-anthracene on a metal surface realizes the full cyclodehydrogenation. The difference between solution and on-surface reactivity can be rationalized by the larger dihedral angle between repeat units in solution, which is reduced under the pronounced interaction with the metal surface. The peri-fusion in the title polymer gives rise to a narrow electronic band gap optical absorptions extending far into the near-infrared region. Oligomeric models are synthesized as well to support the analyses of the electronic and photophysical properties.

4.
J Am Chem Soc ; 145(44): 24126-24135, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37867298

RESUMO

Single-atom catalysts (SACs) have generated excitement for their potential to downsize metal particles to the atomic limit with engineerable local environments and improved catalytic reactivities and selectivities. However, successes have been limited to small-molecule transformations with little progress toward targeting complex-building reactions, such as metal-catalyzed cross-coupling. Using a supercritical carbon-dioxide-assisted protocol, we report a heterogeneous single-atom Pt-catalyzed Heck reaction, which provides the first C-C bond-forming migratory insertion on SACs. Our quantum mechanical computations establish the reaction mechanism to involve a novel C-rich coordination site (i.e., PtC4) that demonstrates an unexpected base effect. Notably, the base was found to transiently modulate the coordination environment to allow migratory insertion into an M-C species, a process with a high steric impediment with no previous example on SACs. The studies showcase how SACs can introduce coordination structures that have remained underexplored in catalyst design. These findings offer immense potential for transferring the vast and highly versatile reaction manifold of migratory-insertion-based bond-forming protocols to heterogeneous SACs.

5.
Chemistry ; 29(22): e202203981, 2023 Apr 18.
Artigo em Inglês | MEDLINE | ID: mdl-36695295

RESUMO

A series of zigzag-edged polycyclic aromatic hydrocarbons (PAHs) (Z1-Z3) were synthesized from 2,12-dibromo-7,14-diphenyl-benzo[m]tetraphene (9) as a versatile building block. Their structures were unambiguously confirmed by laser desorption/ionization time-of-flight mass spectrometry, 1 H NMR, Raman, and Fourier-transformed infrared (FTIR) spectroscopies as well as scanning tunneling microscopy. The fingerprint vibrational modes were elucidated with theoretical support. The edge- and size-dependent optical properties were characterized by UV-Vis absorption and fluorescence spectroscopy and DFT calculations. Moreover, ultrafast transient absorption spectroscopy revealed distinct modulation of the photophysical properties upon π-extension from Z1 to Z2, the latter having a gulf edge.

6.
Angew Chem Int Ed Engl ; 62(34): e202307750, 2023 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-37365137

RESUMO

We report a facile synthesis of diindeno-fused dibenzo[a,h]anthracene derivatives (DIDBA-2Cl, DIDBA-2Ph, and DIDBA-2H) with different degrees of non-planarity using three substituents (chloro, phenyl, and hydrogen) of various sizes. The planarization of their cores, as evidenced by the decreased end-to-end torsional angles, was confirmed by X-ray crystallography. Their enhanced energy gaps with twisting were investigated by a combination of spectroscopic and electrochemical methods with density functional theory, which showed a transition from singlet open-shell to closed-shell configuration. Moreover, their doubly reduced states, DIDBA-2Ph2- and DIDBA-2H2- , were achieved by chemical reduction. The structures of dianions were identified by X-ray crystallographic analysis, which elucidated that the electron charging further distorted the backbones. The electronic structure of the dianions was demonstrated by experimental and theoretical approaches, suggesting decreased energy gaps with larger non-planarity, different from the neutral species.

7.
J Am Chem Soc ; 144(26): 11499-11524, 2022 07 06.
Artigo em Inglês | MEDLINE | ID: mdl-35671225

RESUMO

As cut-outs from a graphene sheet, nanographenes (NGs) and graphene nanoribbons (GNRs) are ideal cases with which to connect the world of molecules with that of bulk carbon materials. While various top-down approaches have been developed to produce such nanostructures in high yields, in the present perspective, precision structural control is emphasized for the length, width, and edge structures of NGs and GNRs achieved by modern solution and on-surface syntheses. Their structural possibilities have been further extended from "flatland" to the three-dimensional world, where chirality and handedness are the jewels in the crown. In addition to properties exhibited at the molecular level, self-assembly and thin-film structures cannot be neglected, which emphasizes the importance of processing techniques. With the rich toolkit of chemistry in hand, NGs and GNRs can be endowed with versatile properties and functions ranging from stimulated emission to spintronics and from bioimaging to energy storage, thus demonstrating their multitalents in present and future materials science.


Assuntos
Grafite , Nanoestruturas , Nanotubos de Carbono , Grafite/química , Ciência dos Materiais , Nanoestruturas/química , Nanotubos de Carbono/química
8.
Angew Chem Int Ed Engl ; 61(18): e202201088, 2022 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-35192234

RESUMO

The bottom-up synthesis of an unprecedentedly large cove-edged nanographene, hexa-peri-hexabenzo-bis-peri-octacene (HBPO), is reported in this work. Chiral high-performance liquid chromatography and density functional theory (DFT) calculations revealed multiple conformations in solution. Two different molecular conformations, "waggling" and "butterfly", were found in crystals by X-ray crystallography, and the selectivity of conformations could be tuned by solvents. The optoelectronic properties of HBPO were investigated by UV/Vis absorption and fluorescence spectroscopies, cyclic voltammetry, and DFT calculations. The contorted geometry and branched alkyl groups suppress the aggregation of HBPO in solution, leading to a high fluorescence quantum yield of 79 %. The optical-gain properties were explored through transient absorption and amplified spontaneous emission spectroscopies, which enrich the choices of edge structures for potential applications in laser cavities.

9.
J Am Chem Soc ; 143(7): 2682-2687, 2021 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-33560113

RESUMO

Polycyclic aromatic hydrocarbons (PAHs) are employed as organic semiconductors because their delocalized π-electron systems and strong intermolecular interactions endow them with an exceptional charge-transport ability. However, the deposition of PAHs from solution onto high-quality thin films is often difficult. Here, we report a one-step electrochemical method to synthesize and deposit unsubstituted PAHs, starting from twisted oligophenyl precursors. The cyclodehydrogenated products were analyzed by matrix-assisted laser-desorption time-of-flight mass spectrometry as well as Fourier transform infrared and Raman spectroscopy. With this electrosynthesis and deposition, the PAHs stack into compact and ordered supramolecular structures along the π-π direction to form thin films with controllable thicknesses and doping levels. The direct fabrication of PAH films opens new pathways toward PAH-based optoelectronic devices.

10.
J Am Chem Soc ; 142(25): 11022-11031, 2020 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-32456437

RESUMO

An olympicenyl radical, a spin 1/2 hydrocarbon radical with C2v symmetry and uneven spin distribution, remains elusive despite the considerable theoretical research interest. Herein, we report syntheses of two air-stable olympicenyl radical derivatives, OR1 and OR2, with half-life times (τ1/2) in air-saturated solution of 7 days and 34 days. The high stability was ascribed to kinetic blocking of reactive sites with high spin densities. X-ray crystallographic analysis revealed unique 20-center-2-electron head-to-tail π-dimer structures with intermolecular distances shorter than the sum of van der Waals radius of carbon. The ground state of the π-dimers was found to be singlet, with singlet-triplet energy gaps estimated to be -2.34 kcal/mol and -3.28 kcal/mol for OR1 and OR2, respectively, by variable-temperature electron spin resonance (ESR) spectroscopy. The monomeric radical species were in equilibrium with the π-dimer in solution, and the optical and electrochemical properties of the monomers and π-dimers in solution were investigated by UV-vis-NIR spectroscopy and cyclic voltammetry, revealing a concentration-dependent nature. Theoretical calculations illustrated that upon formation of a π-dimer the local aromaticity of each monomer was enhanced, and spatial ring current between the monomers was present, which resulted in an increment of aromaticity of the interior of the π-dimer.

11.
Angew Chem Int Ed Engl ; 59(23): 9026-9031, 2020 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-32096589

RESUMO

Incorporation of a non-hexagonal ring into a nanographene framework can lead to new electronic properties. During the attempted synthesis of naphthalene-bridged double [6]helicene and heptagon-containing nanographene by the Scholl reaction, an unexpected azulene-embedded nanographene and its triflyloxylated product were obtained, as confirmed by X-ray crystallographic analysis and 2D NMR spectroscopy. A 5/7/7/5 ring-fused substructure containing two formal azulene units is formed, but only one of them shows an azulene-like electronic structure. The formation of this unique structure is explained by arenium ion mediated 1,2-phenyl migration and a naphthalene to azulene rearrangement reaction according to an in-silico study. This report represents the first experimental example of the thermodynamically unfavorable naphthalene to azulene rearrangement and may lead to new azulene-based molecular materials.

12.
Angew Chem Int Ed Engl ; 59(21): 8113-8117, 2020 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-32011764

RESUMO

The efficient synthesis and electronic properties of two large-size cove-edged nanographenes (NGs), CN1 and CN2, are presented. X-ray crystallographic analysis reveals a contorted backbone for both molecules owing to the steric repulsion at the inner cove position. Noticeably, the dominant structures of these molecules contain four (for CN1) or six (for CN2) localized C=C double bonds embedded in nine (for CN1) or twelve (for CN2) aromatic sextet rings according to Clar's formula, which is supported by bond length analysis and theoretical (NICS, ACID) calculations. Furthermore, Raman spectra exhibit a band associated with the longitudinal CC stretching mode of olefinic double bonds. Owing to the existence of the additional olefinic bonds, both compounds show a small band gap (1.84 eV for CN1 and 1.37 eV for CN2). They also display moderate fluorescence quantum yield (35 % for CN1 and 50 % for CN2) owing to the contorted geometry, which can suppress aggregation in solution.

13.
J Am Chem Soc ; 141(41): 16266-16270, 2019 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-31565929

RESUMO

We report a [6]cyclo-para-phenylmethine ([6]CPPM) macrocycle that shows benzene-like electronic properties. Its mesityl derivative, [6]CPPM-Mes, was isolated in crystalline form. X-ray analysis reveals a C2h symmetry, and the bond lengths of the benzenoid/quinoid rings are averaged via resonance. One averaged 1H NMR peak for the protons on the backbone was observed at room temperature, but it was split into one shielded and one deshielded resonance below 198 K, consistent with its globally aromatic character with a dominant 30π conjugation pathway along the periphery. It exhibits open-shell diradical character with a moderate singlet-triplet energy gap (ΔES-T = -6.23 kcal/mol). Its dication is antiaromatic and open-shell, showing a smaller ΔES-T value (-4.18 kcal/mol). Overall, [6]CPPM behaves like an open-shell aromatic "super-benzene".

14.
Angew Chem Int Ed Engl ; 58(51): 18591-18597, 2019 Dec 16.
Artigo em Inglês | MEDLINE | ID: mdl-31608578

RESUMO

The ability to use mechanical strain to steer chemical reactions creates completely new opportunities for solution- and solid-phase synthesis of functional molecules and materials. However, this strategy is not readily applied in the bottom-up on-surface synthesis of well-defined nanostructures. We report an internal strain-induced skeletal rearrangement of one-dimensional (1D) metal-organic chains (MOCs) via a concurrent atom shift and bond cleavage on Cu(111) at room temperature. The process involves Cu-catalyzed debromination of organic monomers to generate 1,5-dimethylnaphthalene diradicals that coordinate to Cu adatoms, forming MOCs with both homochiral and heterochiral naphthalene backbone arrangements. Bond-resolved non-contact atomic force microscopy imaging combined with density functional theory calculations showed that the relief of substrate-induced internal strain drives the skeletal rearrangement of MOCs via 1,3-H shifts and shift of Cu adatoms that enable migration of the monomer backbone toward an energetically favorable registry with the Cu(111) substrate. Our findings on this strain-induced structural rearrangement in 1D systems will enrich the toolbox for on-surface synthesis of novel functional materials and quantum nanostructures.

15.
Angew Chem Int Ed Engl ; 57(22): 6541-6545, 2018 05 28.
Artigo em Inglês | MEDLINE | ID: mdl-29655220

RESUMO

An efficient synthetic method toward graphene-like molecules (GLMs), having four zigzag edges, is described. They were obtained as stable materials and their structures were confirmed by X-ray crystallographic analysis. They exhibit topology- and size-dependent electronic properties and global aromaticity, which are all different from GLMs having either all-armchair edges, or three zigzag edges, or two armchair/two zigzag edges. They can be reversibly oxidized and reduced into stable charged species, which show fragmental aromatic character to minimize anti-aromaticity. Our studies give some new insights into the electronic structures and properties of a new type of rarely studied GLMs.

16.
Adv Mater ; 36(37): e2311355, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38374727

RESUMO

Liquid organic hydrogen carriers (LOHCs) have gained significant attention for large-scale hydrogen storage due to their remarkable gravimetric hydrogen storage capacity (HSC) and compatibility with existing oil and gas transportation networks for long-distance transport. However, the practical application of reversible LOHC systems has been constrained by the intrinsic thermodynamic properties of hydrogen carriers and the performances of associated catalysts in the (de)hydrogenation cycles. To overcome these challenges, thermodynamically favored carriers, high-performance catalysts, and catalytic procedures need to be developed. Here, significant advances in recent years have been summarized, primarily centered on regular LOHC systems catalyzed by homogeneous and heterogeneous catalysts, including dehydrogenative aromatization of cycloalkanes to arenes and N-heterocyclics to N-heteroarenes, as well as reverse hydrogenation processes. Furthermore, with the development of metal complexes for dehydrogenative coupling, a new family of reversible LOHC systems based on alcohols is described that can release H2 under relatively mild conditions. Finally, views on the next steps and challenges in the field of LOHC technology are provided, emphasizing new resources for low-cost hydrogen carriers, high-performance catalysts, catalytic technologies, and application scenarios.

17.
Chem Sci ; 11(47): 12816-12821, 2020 Oct 23.
Artigo em Inglês | MEDLINE | ID: mdl-34094476

RESUMO

There are three possible isomers for hexa-peri-hexabenzocoronene (HBC) with two extra K-regions, but only two of them have been reported, namely with the meta- and para-configurations. Herein, we describe the synthesis of HBC 4 with two extra K-regions in the ortho-configuration, forming a longer zigzag edge compared with the other two isomers. The structure of 4 was validated by laser desorption/ionization time-of-flight mass analysis and nuclear magnetic resonance spectra, as well as Raman and infrared spectroscopies supported by density functional theory calculations. The optical properties of 4 were investigated by UV/vis absorption and ultrafast transient absorption spectroscopy. Together with the analysis of aromaticity, the influence of the zigzag edge on the π-conjugation pathway and HOMO-LUMO gaps of the three isomers were investigated.

18.
Nanomaterials (Basel) ; 10(8)2020 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-32759768

RESUMO

Chemically synthesized zigzag-edged nanographenes (NG) have recently demonstrated great success as the active laser units in solution-processed organic distributed feedback (DFB) lasers. Here, we report the first observation of dual amplified spontaneous emission (ASE) from a large-size NG derivative (with 12 benzenoid rings) dispersed in a polystyrene film. ASE is observed simultaneously at the 685 and 739 nm wavelengths, which correspond to different transitions of the photoluminescence spectrum. Ultrafast pump-probe spectroscopy has been used to ascertain the underlying photophysical processes taking place in the films. DFB lasers, based on these materials and top-layer nanostructured polymeric resonators (i.e., one or two-dimensional surface relief gratings), have been fabricated and characterized. Lasers emitting close to either one of the two possible ASE wavelengths, or simultaneously at both of them, have been prepared by proper selection of the resonator parameters.

19.
Chem Commun (Camb) ; 55(39): 5567-5570, 2019 May 09.
Artigo em Inglês | MEDLINE | ID: mdl-31025679

RESUMO

We report the challenging synthesis and electronic properties of a new class of rhombic peri-fused acene dimers, the so-called peri-acenoacenes. Compared to rectangular peri-fused peri-acenes, peri-acenoacenes show less diradical character and higher stability. Two soluble and stable aryl-substituted peri-acenoacenes, peri-tetracenotetracene (TT-Ar) and peri-pentacenopentacene (PP-Ar), are synthesized and their structures are confirmed by X-ray crystallographic analysis. Their optical properties and electronic properties are different from those of peri-acene derivatives. Unexpectedly, both the neutral compounds and dications are aromatic.

20.
Nat Commun ; 10(1): 3327, 2019 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-31346182

RESUMO

The chemical synthesis of nanographene molecules constitutes the bottom-up approach toward graphene, simultaneously providing rational chemical design, structure-property control and exploitation of their semiconducting and luminescence properties. Here, we report nanographene-based lasers from three zigzag-edged polycyclic aromatics. The devices consist of a passive polymer film hosting the nanographenes and a top-layer polymeric distributed feedback resonator. Both the active material and the laser resonator are processed from solution, key for the purpose of obtaining low-cost devices with mechanical flexibility. The prepared lasers show narrow linewidth ( < 0.13 nm) emission at different spectral regions covering a large segment of the visible spectrum, and up to the vicinity of the near-infrared. They show outstandingly long operational lifetimes (above 105 pump pulses) and very low thresholds. These results represent a significant step forward in the field of graphene and broaden its versatility in low-cost devices implying light emission, such as lasers.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA