Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 23(7): 2808-2815, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-36961344

RESUMO

Tuning the ferroelectric domain structure by a combination of elastic and electrostatic engineering provides an effective route for enhanced piezoelectricity. However, for epitaxial thin films, the clamping effect imposed by the substrate does not allow aftergrowth tuning and also limits the electromechanical response. In contrast, freestanding membranes, which are free of substrate constraints, enable the tuning of a subtle balance between elastic and electrostatic energies, giving new platforms for enhanced and tunable functionalities. Here, highly tunable piezoelectricity is demonstrated in freestanding PbTiO3 membranes, by varying the ferroelectric domain structures from c-dominated to c/a and a domains via aftergrowth thermal treatment. Significantly, the piezoelectric coefficient of the c/a domain structure is enhanced by a factor of 2.5 compared with typical c domain PbTiO3. This work presents a new strategy to manipulate the piezoelectricity in ferroelectric membranes, highlighting their great potential for nano actuators, transducers, sensors and other NEMS device applications.

2.
J Phys Condens Matter ; 31(22): 225001, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-30822772

RESUMO

Sr2CrWO6/Sr2Fe10/9Mo8/9O6 (SCWO/SFMO) superlattices with 4, 6, 7, 10 periods (abbreviated as S-1, S-2, S-3, and S-4) were prepared on (0 0 1) SrTiO3 (STO) substrates by pulsed laser deposition. All superlattices show macroscopic ferromagnetic behavior, and the magnetization increases with increasing period. The S-1 superlattice demonstrates semiconductor-like temperature-dependent resistivity in the whole measuring temperature range and negative magnetoresistance of -5.3% at 2 K with 2 T magnetic field, while the other superlattices illustrate metallic behaviors and increasing positive magnetoresistance of 223.1%, 275.4%, and 766.1% under the same conditions. This work not only provides a feasible way to tune the MR effect in magnetic perovskite oxides, but also may stimulate further work on artificially micro-structured thin films with designable magnetic properties.

3.
Sci Adv ; 3(11): e1701473, 2017 11.
Artigo em Inglês | MEDLINE | ID: mdl-29119138

RESUMO

Magnetoresistance (MR) is the magnetic field-induced change of electrical resistance. The MR effect not only has wide applications in hard drivers and sensors but also is a long-standing scientific issue for complex interactions. Ferromagnetic/ferrimagnetic oxides generally show negative MR due to the magnetic field-induced spin order. We report the unusually giant positive MR up to 17,200% (at 2 K and 7 T) in 12-nm Sr2CrWO6 thin films, which show metallic behavior with high carrier density of up to 2.26 × 1028 m-3 and high mobility of 5.66 × 104 cm2 V-1 s-1. The possible mechanism is that the external magnetic field suppresses the long-range antiferromagnetic order to form short-range antiferromagnetic fluctuations, which enhance electronic scattering and lead to the giant positive MR. The high mobility may also have contributions to the positive MR. These results not only experimentally confirm that the giant positive MR can be realized in oxides but also open up new opportunities for developing and understanding the giant positive MR in oxides.

4.
ACS Appl Mater Interfaces ; 9(30): 25397-25403, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28699729

RESUMO

Thin films of 0.85BiFe1-2xTixMgxO3-0.15CaTiO3 (x = 0.1 and 0.2, abbreviated to C-1 and C-2, respectively) have been fabricated on (001) SrTiO3 substrate with and without a conductive La0.7Sr0.3MnO3 buffer layer. The X-ray θ-2θ and ϕ scans, atomic force microscopy, and cross-sectional transmission electron microscopy confirm the (001) epitaxial nature of the thin films with very high growth quality. Both the C-1 and C-2 thin films show well-shaped magnetization-magnetic field hysteresis at room temperature, with enhanced switchable magnetization values of 145.3 and 42.5 emu/cm3, respectively. The polarization-electric loops and piezoresponse force microscopy measurements confirm the room-temperature ferroelectric nature of both films. However, the C-1 films illustrate a relatively weak ferroelectric behavior and the poled states are easy to relax, whereas the C-2 films show a relatively better ferroelectric behavior with stable poled states. More interestingly, the room-temperature thermal conductivity of C-1 and C-2 films are measured to be 1.10 and 0.77 W/(m·K), respectively. These self-consistent multiferroic properties and thermal conductivities are discussed by considering the composition-dependent content and migration of Fe-induced electrons and/or charged point defects. This study not only provides multifunctional materials with excellent room-temperature magnetic, ferroelectric, and thermal conductivity properties but may also stimulate further work to develop BiFeO3-based materials with unusual multifunctional properties.

5.
J Phys Condens Matter ; 25(12): 125604, 2013 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-23420505

RESUMO

The thickness-dependent metal-insulator transition is observed in meta-stable orthorhombic SrIrO3 thin films synthesized by pulsed laser deposition. SrIrO3 films with thicknesses less than 3 nm demonstrate insulating behaviour, whereas those thicker than 4 nm exhibit metallic conductivity at high temperature, and insulating-like behaviour at low temperature. Weak/Anderson localization is mainly responsible for the observed thickness-dependent metal-insulator transition in SrIrO3 films. Temperature-dependent resistance fitting shows that electrical-conductivity carriers are mainly scattered by the electron-boson interaction rather than the electron-electron interaction. Analysis of the magneto-conductance proves that the spin-orbit interaction plays a crucial role in the magneto-conductance property of SrIrO3.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA