Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Ann Hematol ; 103(7): 2499-2509, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38695872

RESUMO

Poor literature report actual and detailed costs of chimeric antigen receptor (CAR) T-cell pathway in a real-life setting. We retrospectively collect data for all patients with relapsed/refractory aggressive large B-cell lymphoma who underwent leukapheresis between August 2019 and August 2022. All costs and medical resource consumption accountability were calculated on an intention-to-treat (ITT) basis, starting from leukapheresis to the time when the patient (infused or not) exited the CAR T-cell pathway for any reason. Eighty patients were addressed to leukapheresis and 59 were finally infused. After excluding CAR-T product cost, the main driver of higher costs were hospitalizations followed by the examinations/procedures and other drugs, respectively 43.9%, 26.3% and 25.4% of the total. Regarding costs of drugs and medications other than CAR T products, the most expensive items are those referred to AEs, both infective and extra-infective within 30 days from infusion, that account for 63% of the total. Density plot of cost analyses did not show any statistically significant difference with respect to the years of leukapheresis or infusion. To achieve finally 59/80 infused patients the per capita patients without CAR-T products results 74,000 euros. This analysis covers a growing concern on health systems, the burden of expenses related to CAR T-cell therapy, which appears to provide significant clinical benefit despite its high cost, thus making economic evaluations highly relevant. The relevance of this study should be also viewed in light of continuously evolving indications for this therapy.


Assuntos
Antígenos CD19 , Imunoterapia Adotiva , Linfoma Difuso de Grandes Células B , Humanos , Masculino , Feminino , Imunoterapia Adotiva/economia , Pessoa de Meia-Idade , Estudos Retrospectivos , Idoso , Itália , Linfoma Difuso de Grandes Células B/economia , Linfoma Difuso de Grandes Células B/terapia , Linfoma Difuso de Grandes Células B/imunologia , Adulto , Receptores de Antígenos Quiméricos/uso terapêutico , Leucaférese/economia
2.
J Clin Invest ; 2024 Jun 04.
Artigo em Inglês | MEDLINE | ID: mdl-38833312

RESUMO

BACKGROUND: Predicting Immune-effector Cell Associated Neurotoxicity Syndrome (ICANS) in patients infused with Chimeric Antigen Receptor T cells (CAR-T) is still a conundrum. This complication, thought to be consequent to CAR-T cell activation, arises a few days after infusion, when circulating CAR-T cells are scarce and specific CAR-T cell-derived biomarkers are lacking. METHODS: Human CD19.CAR-T cells were generated to gain insight into CAR+ extracellular vesicle (CAR+EV) release upon target engagement. A prospective cohort of 100 B-cell lymphoma patients infused with approved CD19.CAR-T cell products (axi-cel, brexu-cel and tisa-cel) was assessed for plasma CAR+EVs as potential biomarkers of in vivo CD19.CAR-T cell activation and predictors of ICANS. Human induced pluripotent stem cells (iPSCs)-derived neural cells were used as a model for CAR+EV-induced neurotoxicity. RESULTS: In vitro, exosome-like CAR+EVs were released by CD19.CAR-T cells upon target engagement. In vivo, CAR+EVs were detectable as early as 1 hour in the plasma of patients. A concentration > 132.8 CAR+EVs/µl at hour +1 or > 224.5 CAR+EVs/µl at day +1 predicted ICANS in advance of 4 days, with a sensitivity up to 96.55% and a specificity up to 80.36%, outperforming other potential ICANS predictors. Enolase 2 (ENO2+) nanoparticles were released by iPSCs-derived neural cells upon CAR+EVs exposure and were increased in the plasma of ICANS patients. CONCLUSIONS: These results convey that plasma CAR+EVs are an immediate signal of CD19.CAR-T cell activation, are suitable predictors of neurotoxicity, and may be involved in ICANS pathogenesis. TRIAL REGISTRATION: NCT04892433, NCT05807789.

3.
Front Immunol ; 13: 1058126, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36726971

RESUMO

Background: Infusion of second generation autologous CD19-targeted chimeric antigen receptor (CAR) T cells in patients with R/R relapsed/refractory B-cell lymphoma (BCL) is affected by inflammatory complications, such as Immune Effector Cell-Associated Neurotoxicity Syndrome (ICANS). Current literature suggests that the immune profile prior to CAR-T infusion modifies the chance to develop ICANS. Methods: This is a monocenter prospective study on 53 patients receiving approved CAR T-cell products (29 axi-cel, 24 tisa-cel) for R/R-BCL. Clinical, biochemical, and hematological variables were analyzed at the time of pre-lymphodepletion (pre-LD). In a subset of 21 patients whose fresh peripheral blood sample was available, we performed cytofluorimetric analysis of leukocytes and extracellular vesicles (EVs). Moreover, we assessed a panel of soluble plasma biomarkers (IL-6/IL-10/GDF-15/IL-15/CXCL9/NfL) and microRNAs (miR-146a-5p, miR-21-5p, miR-126-3p, miR-150-5p) which are associated with senescence and inflammation. Results: Multivariate analysis at the pre-LD time-point in the entire cohort (n=53) showed that a lower percentage of CD3+CD8+ lymphocytes (38.6% vs 46.8%, OR=0.937 [95% CI: 0.882-0.996], p=0.035) and higher levels of serum C-reactive protein (CRP, 4.52 mg/dl vs 1.00 mg/dl, OR=7.133 [95% CI: 1.796-28], p=0.005) are associated with ICANS. In the pre-LD samples of 21 patients, a significant increase in the percentage of CD8+CD45RA+CD57+ senescent cells (median % value: 16.50% vs 9.10%, p=0.009) and monocytic-myeloid derived suppressor cells (M-MDSC, median % value: 4.4 vs 1.8, p=0.020) was found in ICANS patients. These latter also showed increased levels of EVs carrying CD14+ and CD45+ myeloid markers, of the myeloid chemokine CXCL-9, as well of the MDSC-secreted cytokine IL-10. Notably, the serum levels of circulating neurofilament light chain, a marker of neuroaxonal injury, were positively correlated with the levels of senescent CD8+ T cells, M-MDSC, IL-10 and CXCL-9. No variation in the levels of the selected miRNAs was observed between ICANS and no-ICANS patients. Discussion: Our data support the notion that pre-CAR-T systemic inflammation is associated with ICANS. Higher proportion of senescence CD8+ T cells and M-MDSC correlate with early signs of neuroaxonal injury at pre-LD time-point, suggesting that ICANS may be the final event of a process that begins before CAR-T infusion, consequence to patient clinical history.


Assuntos
MicroRNAs , Receptores de Antígenos Quiméricos , Humanos , Receptores de Antígenos Quiméricos/genética , Interleucina-10 , Linfócitos T CD8-Positivos , Imunoterapia Adotiva , Estudos Prospectivos
4.
Cancers (Basel) ; 13(19)2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34638273

RESUMO

Large B-cell lymphomas (LBCL) are the most common types of non-Hodgkin lymphoma. Although outcomes have improved thanks to the introduction of rituximab-based chemoimmunotherapy, certain LBCL still represents a challenge because of initial resistance to therapy or recurrent relapses. Axicabtagene ciloleucel (axi-cel) and tisagenlecleucel (tisa-cel) are second-generation autologous CD19-targeted chimeric antigen receptor (CAR) T-cell therapies approved for patients with relapsed/refractory (R/R) LBCL, based on the results of phase II pivotal single-arm trials ZUMA-1 (for axi-cel) and JULIET (for tisa-cel). Here, we report patients outcomes with axi-cel and tisa-cel in the standard of care (SoC) setting for R/R LBCL, treated at our Institution. Data were collected from patients who underwent leukapheresis between August 2019 and February 2021. Toxicities were graded and managed according to the institution's guidelines. Responses were assessed as per Lugano 2014 classification. Of the 30 patients who underwent leukapheresis, 18 (60%) received axi-cel, while 12 (40%) tisa-cel. Grade 3 or higher cytokine release syndrome and neurotoxicity occurred in 10% and 16% patients, respectively. Best objective and complete response rates were 73.3% and 40%, respectively. Treatment in SoC setting with CD19 CAR T-cell therapies for R/R LBCL showed a manageable safety profile and high objective response rate.

5.
PLoS One ; 12(7): e0181508, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28742866

RESUMO

Factor H-binding protein (fHbp) is an important meningococcal vaccine antigen. Native outer membrane vesicles with over-expressed fHbp (NOMV OE fHbp) have been shown to induce antibodies with broader functional activity than recombinant fHbp (rfHbp). Improved understanding of this broad coverage would facilitate rational vaccine design. We performed a pair-wise analysis of 48 surface-exposed amino acids involved in interacting with factor H, among 383 fHbp variant group 1 sequences. We generated isogenic NOMV-producing meningococcal strains from an African serogroup W isolate, each over-expressing one of four fHbp variant group 1 sequences (ID 1, 5, 9, or 74), including those most common among invasive African meningococcal isolates. Mice were immunised with each NOMV, and sera tested for IgG levels against each of the rfHbp ID and for ability to kill a panel of heterologous meningococcal isolates. At the fH-binding site, ID pairs differed by a maximum of 13 (27%) amino acids. ID 9 shared an amino acid sequence common to 83 ID types. The selected ID types differed by up to 6 amino acids, in the fH-binding site. All NOMV and rfHbp induced high IgG levels against each rfHbp. Serum killing from mice immunised with rfHbp was generally less efficient and more restricted compared to NOMV, which induced antibodies that killed most meningococci tested, with decreased stringency for ID type differences. Breadth of killing was mostly due to anti-fHbp antibodies, with some restriction according to ID type sequence differences. Nevertheless, under our experimental conditions, no relationship between antibody cross-reactivity and variation fH-binding site sequence was identified. NOMV over-expressing different fHbp IDs belonging to variant group 1 induce antibodies with fine specificities against fHbp, and ability to kill broadly meningococci expressing heterologous fHbp IDs. The work reinforces that meningococcal NOMV with OE fHbp is a promising vaccine strategy, and provides a basis for rational selection of antigen sequence types for over-expression on NOMV.


Assuntos
Antígenos de Bactérias/imunologia , Proteínas de Bactérias/imunologia , Fator H do Complemento/imunologia , Infecções Meningocócicas/prevenção & controle , Vacinas Meningocócicas/imunologia , Neisseria meningitidis/imunologia , Animais , Formação de Anticorpos , Antígenos de Bactérias/genética , Antígenos de Bactérias/uso terapêutico , Proteínas de Bactérias/genética , Proteínas de Bactérias/uso terapêutico , Clonagem Molecular , Feminino , Humanos , Imunização , Infecções Meningocócicas/sangue , Infecções Meningocócicas/imunologia , Vacinas Meningocócicas/genética , Vacinas Meningocócicas/uso terapêutico , Camundongos , Mutação , Neisseria meningitidis/genética , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas Recombinantes/uso terapêutico
6.
PLoS One ; 10(5): e0126325, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-25951061

RESUMO

Most bacterial small RNAs (sRNAs) are post-transcriptional regulators involved in adaptive responses, controlling gene expression by modulating translation or stability of their target mRNAs often in concert with the RNA chaperone Hfq. Neisseria meningitides, the leading cause of bacterial meningitis, is able to adapt to different host niches during human infection. However, only a few sRNAs and their functions have been fully described to date. Recently, transcriptional expression profiling of N. meningitides in human blood ex vivo revealed 91 differentially expressed putative sRNAs. Here we expanded this analysis by performing a global transcriptome study after exposure of N. meningitides to physiologically relevant stress signals (e.g. heat shock, oxidative stress, iron and carbon source limitation). and we identified putative sRNAs that were differentially expressed in vitro. A set of 98 putative sRNAs was obtained by analyzing transcriptome data and 8 new sRNAs were validated, both by Northern blot and by primer extension techniques. Deletion of selected sRNAs caused attenuation of N. meningitides infection in the in vivo infant rat model, leading to the identification of the first sRNAs influencing meningococcal bacteremia. Further analysis indicated that one of the sRNAs affecting bacteremia responded to carbon source availability through repression by a GntR-like transcriptional regulator. Both the sRNA and the GntR-like regulator are implicated in the control of gene expression from a common network involved in energy metabolism.


Assuntos
Bacteriemia/sangue , Neisseria meningitidis/isolamento & purificação , RNA Bacteriano/genética , Transcriptoma , Animais , Northern Blotting , Ratos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA