Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
J Biol Chem ; 300(5): 107235, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38552739

RESUMO

Defects in mitochondrial RNA metabolism have been linked to sensorineural deafness that often occurs as a consequence of damaged or deficient inner ear hair cells. In this report, we investigated the molecular mechanism underlying a deafness-associated tRNAPhe 593T > C mutation that changed a highly conserved uracil to cytosine at position 17 of the DHU-loop. The m.593T > C mutation altered tRNAPhe structure and function, including increased melting temperature, resistance to S1 nuclease-mediated digestion, and conformational changes. The aberrant tRNA metabolism impaired mitochondrial translation, which was especially pronounced by decreases in levels of ND1, ND5, CYTB, CO1, and CO3 harboring higher numbers of phenylalanine. These alterations resulted in aberrant assembly, instability, and reduced activities of respiratory chain enzyme complexes I, III, IV, and intact supercomplexes overall. Furthermore, we found that the m.593T > C mutation caused markedly diminished membrane potential, and increased the production of reactive oxygen species in the mutant cell lines carrying the m.593T > C mutation. These mitochondrial dysfunctions led to the mitochondrial dynamic imbalance via increasing fission with abnormal mitochondrial morphology. Excessive fission impaired the process of autophagy including the initiation phase, formation, and maturation of the autophagosome. In particular, the m.593T > C mutation upregulated the PARKIN-dependent mitophagy pathway. These alterations promoted an intrinsic apoptotic process for the removal of damaged cells. Our findings provide critical insights into the pathophysiology of maternally inherited deafness arising from tRNA mutation-induced defects in mitochondrial and cellular integrity.


Assuntos
Surdez , Mitocôndrias , RNA de Transferência de Fenilalanina , Humanos , Autofagia , Surdez/genética , Surdez/metabolismo , Potencial da Membrana Mitocondrial , Mitocôndrias/metabolismo , Mitocôndrias/genética , Mitocôndrias/patologia , Dinâmica Mitocondrial , Mutação , Espécies Reativas de Oxigênio/metabolismo , Ubiquitina-Proteína Ligases/genética , Ubiquitina-Proteína Ligases/metabolismo , RNA de Transferência de Fenilalanina/genética
2.
J Vasc Interv Radiol ; 35(8): 1194-1202.e2, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38723863

RESUMO

PURPOSE: To examine the relationship between hyperdense artery sign (HAS)/susceptibility vessel sign (SVS) and thrombus composition and evaluate the effect of HAS/SVS status on the association between first-line thrombectomy techniques and outcomes in patients with acute anterior circulation large vessel occlusion (LVO). MATERIALS AND METHODS: From January 2018 to June 2021, 103 consecutive patients with acute anterior circulation LVO (75 [63.1%] men; median age, 66 years) who underwent thrombectomy and for whom the removed clot was available for histological analyses were retrospectively reviewed. The presence of HAS and SVS was assessed on unenhanced computed tomography (CT) and susceptibility-weighted imaging, respectively. Association of first-line thrombectomy techniques (stent retriever [SR] combined with contact aspiration [CA] vs CA alone) with outcomes was assessed according to HAS/SVS status. RESULTS: Among the included patients, 55 (53.4%) were HAS/SVS-negative, and 69 (67.0%) underwent first-line SR + CA. Higher relative densities of fibrin/platelets (0.56 vs 0.51; P < .001) and lower relative densities of erythrocytes (0.32 vs 0.42; P < .001) were observed in HAS/SVS-negative patients compared with HAS/SVS-positive patients. First-line SR + CA was associated with reduced odds of distal embolization (adjusted odds ratio, 0.18; 95% CI, 0.04-0.83; P = .027) and a more favorable 90-day functional outcome (adjusted odds ratio, 5.29; 95% CI, 1.06-26.34; P = .042) in HAS/SVS-negative patients and a longer recanalization time (53 vs 25 minutes; P = .025) and higher risk of subarachnoid hemorrhage (24.2% vs 0%; P = .044) in HAS/SVS-positive patients. CONCLUSIONS: Absence of HAS/SVS may indicate a higher density of fibrin/platelets in the thrombus, and first-line SR + CA yielded superior functional outcomes than CA alone in patients with acute LVO without HAS/SVS.


Assuntos
Procedimentos Endovasculares , Stents , Trombectomia , Humanos , Masculino , Feminino , Trombectomia/efeitos adversos , Trombectomia/instrumentação , Estudos Retrospectivos , Idoso , Resultado do Tratamento , Pessoa de Meia-Idade , Sucção , Procedimentos Endovasculares/instrumentação , Procedimentos Endovasculares/efeitos adversos , Valor Preditivo dos Testes , Fatores de Risco , Idoso de 80 Anos ou mais , Fatores de Tempo , Trombose Intracraniana/diagnóstico por imagem , Trombose Intracraniana/terapia , Trombose Intracraniana/fisiopatologia
3.
Nanomedicine ; : 102775, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-39111378

RESUMO

The overexpression of inflammatory factors is closely related to the pathogenesis of acute kidney injury (AKI). Additionally, the overproduction of reactive oxygen species (ROS) further exacerbates the inflammatory response. In light of this, monotherapies focused solely on inflammation have proven to be suboptimal. Therefore, this study successfully developed a nanoparticle (SC@Se/GA) that possesses anti-inflammatory and antioxidant properties. The SC@Se/GA has a smaller size, better stability, and kidney-targeting. In vivo experiments showed that the GPx enzyme activity of SC@Se/GA increases by almost 50 % more than SC@Se alone, indicating its efficient ability to scavenge ROS. In the meantime, SC@Se/GA has a longer renal retention period (>24 h) than free drug GA, which can dramatically lower the levels of inflammatory factors TNF-α and IL-6. In summary, SC@Se/GA, through its synergistic anti-inflammatory and antioxidant effects, markedly alleviates CDDP-induced renal injury and restores renal function, providing a new effective strategy for treating AKI.

5.
iScience ; 27(2): 108883, 2024 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-38318358

RESUMO

Mitochondria are dynamic organelles in cellular metabolism and physiology. Mitochondrial DNA (mtDNA) mutations are associated with a broad spectrum of clinical abnormalities. However, mechanisms underlying mtDNA mutations regulate intracellular signaling related to the mitochondrial and cellular integrity are less explored. Here, we demonstrated that mt-tRNAMet 4435A>G mutation-induced nucleotide modification deficiency dysregulated the expression of nuclear genes involved in cytosolic proteins involved in oxidative phosphorylation system (OXPHOS) and impaired the assemble and integrity of OXPHOS complexes. These dysfunctions caused mitochondrial dynamic imbalance, thereby increasing fission and decreasing fusion. Excessive fission impaired the process of autophagy including initiation phase, formation, and maturation of autophagosome. Strikingly, the m.4435A>G mutation upregulated the PARKIN dependent mitophagy pathways but downregulated the ubiquitination-independent mitophagy. These alterations promoted intrinsic apoptotic process for the removal of damaged cells. Our findings provide new insights into mechanism underlying deficient tRNA posttranscription modification regulated intracellular signaling related to the mitochondrial and cellular integrity.

6.
Int J Pharm ; 659: 124250, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38777304

RESUMO

The smart oral administration Insulin device has the potential to improve glycemic management. It can reduce the risk of hypoglycemia associated with exogenous Insulin (INS) therapy while also avoiding many of the disadvantages associated with subcutaneous injections. Furthermore, diabetes mellitus (DM) is an endocrine illness characterized by inflammation, and it is critical to minimize the amount of inflammatory markers in diabetic patients while maintaining average blood glucose. In this study, a responsive nanosystem vitamin B12-Fucoidan-Concanavalin A (VB12-FU-ConA NPs) with anti-inflammatory action was developed for smart oral delivery of Insulin. Con A has high sensitivity and strong specificity as a glucose-responsive material. Fucoidan has anti-inflammatory, immunomodulatory, and hypoglycemic functions, and it can bind to Con A to form a reversible complex. Under high glucose conditions, free glucose competitively binds to Con A, which swells the nanocarrier and promotes Insulin release. Furthermore, in the low pH environment of the gastrointestinal tract, positively charged VB12 and anionic fucoidan bind tightly to protect the Insulin wrapped in the carrier, and VB12 can also bind to intestinal epithelial factors to improve transit rate, thereby promoting INS absorption. In vitro tests showed that the release of nanoparticles in hyperglycemic solutions was significantly higher than the drug release in normoglycemic conditions. Oral delivery of the nanosystems dramatically lowered blood glucose levels in type I diabetic mice (T1DM) during in vivo pharmacodynamics, minimizing the risk of hypoglycemia. Blood glucose levels reached a minimum of 8.1 ± 0.4 mmol/L after 8 h. Administering the nanosystem orally notably decreased the serum levels of tumor necrosis factor-α (TNF-α) and interleukin-6 (IL-6) in diabetic mice. The nano delivery system can be degraded and metabolized in the intestinal tract after being taken orally, demonstrating good biodegradability and biosafety. In conclusion, the present study showed that VB12-FU-ConA nanocarriers are expected to be a novel system for rationalizing blood glucose.


Assuntos
Anti-Inflamatórios , Glicemia , Diabetes Mellitus Experimental , Hipoglicemiantes , Insulina , Polissacarídeos , Animais , Polissacarídeos/administração & dosagem , Polissacarídeos/química , Glicemia/efeitos dos fármacos , Glicemia/análise , Administração Oral , Insulina/administração & dosagem , Insulina/farmacocinética , Hipoglicemiantes/administração & dosagem , Hipoglicemiantes/farmacocinética , Hipoglicemiantes/farmacologia , Camundongos , Anti-Inflamatórios/administração & dosagem , Anti-Inflamatórios/farmacologia , Anti-Inflamatórios/farmacocinética , Diabetes Mellitus Experimental/tratamento farmacológico , Diabetes Mellitus Experimental/sangue , Masculino , Vitamina B 12/administração & dosagem , Nanopartículas/administração & dosagem , Liberação Controlada de Fármacos , Portadores de Fármacos/química , Humanos
7.
Adv Healthc Mater ; 13(17): e2303944, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38444198

RESUMO

Early detection of renal fibrosis (RF) is very important given that it is irreversible when it progresses to the terminal stage. A key marker of RF pathogenesis is activation of myomyofibroblasts, and its targeted imaging may be a promising approach for early detection of RF, but no study has directly imaged activation of renal myomyofibroblasts. Cu2+ plays a major role in the fibrotic activity of myofibroblasts. Herein, inspired by that Cu2+ can complex with bovine serum albumin (BSA), BSA-Ag2S quantum dots (QDs) with aggregation-induced emission (AIE) property are synthesized. Then BSA-Ag2S QDs are modified by chitosan (CS) with renal targeting and hyaluronic acid (HA) with myofibroblast targeting to obtain the AIE assay system (QDs@CS@HA). The system is simple to synthesize, and produces a rapid NIR fluorescence signal turn-on response and a low detection limit of 75 × 10-9 m to Cu2+. In addition, cellular and animal experiments have shown that QDs@CS@HA has good biosafety and cell-targeted imaging capability for RF. Based on the successful application of QDs@CS@HA and the mechanism of RF progression in early RF detection, it is expected that QDs@CS@HA may detect RF before the appearance of clinical symptoms.


Assuntos
Cobre , Fibrose , Pontos Quânticos , Cobre/química , Pontos Quânticos/química , Animais , Soroalbumina Bovina/química , Quitosana/química , Ácido Hialurônico/química , Humanos , Rim/diagnóstico por imagem , Rim/patologia , Rim/metabolismo , Nefropatias/diagnóstico por imagem , Nefropatias/metabolismo , Camundongos , Diagnóstico Precoce , Linhagem Celular
8.
Nat Commun ; 15(1): 3769, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704393

RESUMO

Excessive bone marrow adipocytes (BMAds) accumulation often occurs under diverse pathophysiological conditions associated with bone deterioration. Estrogen-related receptor α (ESRRA) is a key regulator responding to metabolic stress. Here, we show that adipocyte-specific ESRRA deficiency preserves osteogenesis and vascular formation in adipocyte-rich bone marrow upon estrogen deficiency or obesity. Mechanistically, adipocyte ESRRA interferes with E2/ESR1 signaling resulting in transcriptional repression of secreted phosphoprotein 1 (Spp1); yet positively modulates leptin expression by binding to its promoter. ESRRA abrogation results in enhanced SPP1 and decreased leptin secretion from both visceral adipocytes and BMAds, concertedly dictating bone marrow stromal stem cell fate commitment and restoring type H vessel formation, constituting a feed-forward loop for bone formation. Pharmacological inhibition of ESRRA protects obese mice against bone loss and high marrow adiposity. Thus, our findings highlight a therapeutic approach via targeting adipocyte ESRRA to preserve bone formation especially in detrimental adipocyte-rich bone milieu.


Assuntos
Adipócitos , Medula Óssea , Leptina , Osteogênese , Receptores de Estrogênio , Animais , Osteogênese/genética , Adipócitos/metabolismo , Adipócitos/citologia , Camundongos , Leptina/metabolismo , Leptina/genética , Medula Óssea/metabolismo , Receptores de Estrogênio/metabolismo , Receptores de Estrogênio/genética , Células-Tronco Mesenquimais/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/genética , Receptor ERRalfa Relacionado ao Estrogênio , Receptor alfa de Estrogênio/metabolismo , Receptor alfa de Estrogênio/genética , Feminino , Masculino , Camundongos Endogâmicos C57BL , Transdução de Sinais , Células da Medula Óssea/metabolismo , Camundongos Knockout
9.
Diabetol Metab Syndr ; 16(1): 32, 2024 Jan 31.
Artigo em Inglês | MEDLINE | ID: mdl-38297321

RESUMO

BACKGROUND AND PURPOSE: Glucose-to-glycated hemoglobin ratio (GAR) is considered a more reliable marker of stress hyperglycemia by correcting for basal blood glucose levels. This study aimed to investigate the extent to which GAR is associated with 3 month and 1 year all-cause mortalities in patients with acute ischemic stroke (AIS) undergoing mechanical thrombectomy (MT). METHODS: We retrospectively followed 553 AIS patients who underwent MT. The degree of stress hyperglycemia was quantified as the GAR, defined as fasting plasma glucose (mmol/L)/hemoglobin A1c (HbA1c) (%) on the second day after admission. According to the GAR quartiles, the patients were further categorized into four groups (group 1-group 4). We assessed the association between GAR and all-cause mortalities, clinical outcomes during hospitalization and function outcomes at 3 months. The associations between stress hyperglycemia and all-cause mortalities were analyzed using a Cox proportional-hazards model, while other outcomes were analyzed using multiple logistic regression analysis. RESULTS: The follow-up lasted a median of 18 months (range 0-66 months). The 3 month mortality rate was 9.58% (n = 53) and the 1 year mortality rate was 18.62% (n = 103). The Kaplan-Meier analysis revealed a significant inverse relationship between GAR and mortality (P < 0.001). In the Cox proportional-hazards model at 3 months, compared with group1, group 4 of GAR was associated with a significant increase in the risk of 3 month mortality (hazard ratio [HR] = 4.11, 95% confidence interval [CI] 1.41-12.0, P = 0.01) after adjusting for potential covariates. On multivariate logistic regression analysis, GAR was strongly associated with an increased risk of 3 month poor function outcome. CONCLUSIONS: Stress hyperglycemia, quantified by a higher GAR, is associated with all-cause mortality and poor functional outcomes in patients with AIS who undergo MT. Furthermore, GAR may contribute to improving the predictive efficiency of all-cause mortality in patients with AIS after MT, especially short-term all-cause mortality.

10.
ACS Nano ; 18(28): 18503-18521, 2024 Jul 16.
Artigo em Inglês | MEDLINE | ID: mdl-38941540

RESUMO

Three-dimensional (3D) bioprinting has advantages for constructing artificial skin tissues in replicating the structures and functions of native skin. Although many studies have presented improved effect of printing skin substitutes in wound healing, using hydrogel inks to fabricate 3D bioprinting architectures with complicated structures, mimicking mechanical properties, and appropriate cellular environments is still challenging. Inspired by collagen nanofibers withstanding stress and regulating cell behavior, a patterned nanofibrous film was introduced to the printed hydrogel scaffold to fabricate a composite artificial skin substitute (CASS). The artificial dermis was printed using gelatin-hyaluronan hybrid hydrogels containing human dermal fibroblasts with gradient porosity and integrated with patterned nanofibrous films simultaneously, while the artificial epidermis was formed by seeding human keratinocytes upon the dermis. The collagen-mimicking nanofibrous film effectively improved the tensile strength and fracture resistance of the CASS, making it sewable for firm implantation into skin defects. Meanwhile, the patterned nanofibrous film also provided the biological cues to guide cell behavior. Consequently, CASS could effectively accelerate the regeneration of large-area skin defects in mouse and pig models by promoting re-epithelialization and collagen deposition. This research developed an effective strategy to prepare composite bioprinting architectures for enhancing mechanical property and regulating cell behavior, and CASS could be a promising skin substitute for treating large-area skin defects.


Assuntos
Bioimpressão , Nanofibras , Impressão Tridimensional , Pele Artificial , Humanos , Nanofibras/química , Animais , Camundongos , Suínos , Hidrogéis/química , Fibroblastos/citologia , Engenharia Tecidual , Queratinócitos/citologia , Alicerces Teciduais/química , Ácido Hialurônico/química , Gelatina/química
11.
Signal Transduct Target Ther ; 9(1): 70, 2024 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-38531882

RESUMO

Cellular metabolism is an intricate network satisfying bioenergetic and biosynthesis requirements of cells. Relevant studies have been constantly making inroads in our understanding of pathophysiology, and inspiring development of therapeutics. As a crucial component of epigenetics at post-transcription level, RNA modification significantly determines RNA fates, further affecting various biological processes and cellular phenotypes. To be noted, immunometabolism defines the metabolic alterations occur on immune cells in different stages and immunological contexts. In this review, we characterize the distribution features, modifying mechanisms and biological functions of 8 RNA modifications, including N6-methyladenosine (m6A), N6,2'-O-dimethyladenosine (m6Am), N1-methyladenosine (m1A), 5-methylcytosine (m5C), N4-acetylcytosine (ac4C), N7-methylguanosine (m7G), Pseudouridine (Ψ), adenosine-to-inosine (A-to-I) editing, which are relatively the most studied types. Then regulatory roles of these RNA modification on metabolism in diverse health and disease contexts are comprehensively described, categorized as glucose, lipid, amino acid, and mitochondrial metabolism. And we highlight the regulation of RNA modifications on immunometabolism, further influencing immune responses. Above all, we provide a thorough discussion about clinical implications of RNA modification in metabolism-targeted therapy and immunotherapy, progression of RNA modification-targeted agents, and its potential in RNA-targeted therapeutics. Eventually, we give legitimate perspectives for future researches in this field from methodological requirements, mechanistic insights, to therapeutic applications.


Assuntos
Adenosina , Imunoterapia , Aminoácidos , Epigênese Genética , RNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA