Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Ecol Lett ; 26(12): 2077-2086, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37787116

RESUMO

Resource quantity controls biodiversity across spatial scales; however, the importance of resource quality to cross-scale patterns in species richness has seldom been explored. We evaluated the relationship between stream basal resource quantity (periphyton chlorophyll a) and invertebrate richness and compared this to the relationship of resource quality (periphyton stoichiometry) and richness at local and regional scales across 27 North American streams. At the local scale, invertebrate richness peaked at intermediate levels of chlorophyll a, but had a shallow negative relationship with periphyton C:P and N:P. However, at the regional scale, richness had a strong negative relationship with chlorophyll a and periphyton C:P and N:P. The divergent relationships of periphyton chlorophyll a and stoichiometry with invertebrate richness suggest that autochthonous resource quantity limits diversity more than quality, consistent with patterns of eutrophication. Collectively, we provide evidence that patterns in resource quantity and quality play important, yet differing roles in shaping freshwater biodiversity across spatial scale.


Assuntos
Ecossistema , Rios , Animais , Clorofila A , Invertebrados , Biodiversidade
2.
Int Stat Rev ; 89(3): 605-634, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37197445

RESUMO

The scientific rigor and computational methods of causal inference have had great impacts on many disciplines but have only recently begun to take hold in spatial applications. Spatial causal inference poses analytic challenges due to complex correlation structures and interference between the treatment at one location and the outcomes at others. In this paper, we review the current literature on spatial causal inference and identify areas of future work. We first discuss methods that exploit spatial structure to account for unmeasured confounding variables. We then discuss causal analysis in the presence of spatial interference including several common assumptions used to reduce the complexity of the interference patterns under consideration. These methods are extended to the spatiotemporal case where we compare and contrast the potential outcomes framework with Granger causality and to geostatistical analyses involving spatial random fields of treatments and responses. The methods are introduced in the context of observational environmental and epidemiological studies and are compared using both a simulation study and analysis of the effect of ambient air pollution on COVID-19 mortality rate. Code to implement many of the methods using the popular Bayesian software OpenBUGS is provided.

3.
Atmos Environ (1994) ; 2222020 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-32863727

RESUMO

A typical challenge in air pollution epidemiology is to perform detailed exposure assessment for individuals for which health data are available. To address this problem, in the last few years, substantial research efforts have been placed in developing statistical methods or machine learning techniques to generate estimates of air pollution at fine spatial and temporal scales (daily, usually) with complete coverage. However, it is not clear how much the predicted exposures yielded by the various methods differ, and which method generates more reliable estimates. In this paper, we aim to address this gap by evaluating a variety of exposure modeling approaches, comparing their predictive performance. Using PM2.5 in year 2011 over the continental U.S. as a case study, we generate national maps of ambient PM2.5 concentration using: (i) ordinary least squares and inverse distance weighting; (ii) kriging; (iii) statistical downscaling models, that is, spatial statistical models that use the information contained in air quality model outputs; (iv) land use regression, that is, linear regression modeling approaches that leverage the information in Geographical Information System (GIS) covariates; and (v) machine learning methods, such as neural networks, random forests and support vector regression. We examine the various methods' predictive performance via cross-validation using Root Mean Squared Error, Mean Absolute Deviation, Pearson correlation, and Mean Spatial Pearson Correlation. Additionally, we evaluated whether factors such as, season, urbanicty, and levels of PM2.5 concentration (low, medium or high) affected the performance of the different methods. Overall, statistical methods that explicitly modeled the spatial correlation, e.g. universal kriging and the downscaler model, outperform all the other exposure assessment approaches regardless of season, urbanicity and PM2.5 concentration level. We posit that the better predictive performance of spatial statistical models over machine learning methods is due to the fact that they explicitly account for spatial dependence, thus borrowing information from neighboring observations. In light of our findings, we suggest that future exposure assessment methods for regional PM2.5 incorporate information from neighboring sites when deriving predictions at unsampled locations or attempt to account for spatial dependence.

5.
Biometrika ; 110(3): 699-719, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38500847

RESUMO

Adjusting for an unmeasured confounder is generally an intractable problem, but in the spatial setting it may be possible under certain conditions. We derive necessary conditions on the coherence between the exposure and the unmeasured confounder that ensure the effect of exposure is estimable. We specify our model and assumptions in the spectral domain to allow for different degrees of confounding at different spatial resolutions. One assumption that ensures identifiability is that confounding present at global scales dissipates at local scales. We show that this assumption in the spectral domain is equivalent to adjusting for global-scale confounding in the spatial domain by adding a spatially smoothed version of the exposure to the mean of the response variable. Within this general framework, we propose a sequence of confounder adjustment methods that range from parametric adjustments based on the Matérn coherence function to more robust semiparametric methods that use smoothing splines. These ideas are applied to areal and geostatistical data for both simulated and real datasets.

6.
Front Med (Lausanne) ; 10: 1309795, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38131040

RESUMO

Background: Diabetic retinopathy-related (DR-related) diseases are posing an increasing threat to eye health as the number of patients with diabetes mellitus that are young increases significantly. The automatic diagnosis of DR-related diseases has benefited from the rapid development of image semantic segmentation and other deep learning technology. Methods: Inspired by the architecture of U-Net family, a neighbored attention U-Net (NAU-Net) is designed to balance the identification performance and computational cost for DR fundus image segmentation. In the new network, only the neighboring high- and low-dimensional feature maps of the encoder and decoder are fused by using four attention gates. With the help of this improvement, the common target features in the high-dimensional feature maps of encoder are enhanced, and they are also fused with the low-dimensional feature map of decoder. Moreover, this network fuses only neighboring layers and does not include the inner layers commonly used in U-Net++. Consequently, the proposed network incurs a better identification performance with a lower computational cost. Results: The experimental results of three open datasets of DR fundus images, including DRIVE, HRF, and CHASEDB, indicate that the NAU-Net outperforms FCN, SegNet, attention U-Net, and U-Net++ in terms of Dice score, IoU, accuracy, and precision, while its computation cost is between attention U-Net and U-Net++. Conclusion: The proposed NAU-Net exhibits better performance at a relatively low computational cost and provides an efficient novel approach for DR fundus image segmentation and a new automatic tool for DR-related eye disease diagnosis.

7.
Clim Change ; 170(3-4): 37, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35228765

RESUMO

Probabilistic projections of baseline (with no additional mitigation policies) future carbon emissions are important for sound climate risk assessments. Deep uncertainty surrounds many drivers of projected emissions. Here, we use a simple integrated assessment model, calibrated to century-scale data and expert assessments of baseline emissions, global economic growth, and population growth, to make probabilistic projections of carbon emissions through 2100. Under a variety of assumptions about fossil fuel resource levels and decarbonization rates, our projections largely agree with several emissions projections under current policy conditions. Our global sensitivity analysis identifies several key economic drivers of uncertainty in future emissions and shows important higher-level interactions between economic and technological parameters, while population uncertainties are less important. Our analysis also projects relatively low global economic growth rates over the remainder of the century. This illustrates the importance of additional research into economic growth dynamics for climate risk assessment, especially if pledged and future climate mitigation policies are weakened or have delayed implementations. These results showcase the power of using a simple, transparent, and calibrated model. While the simple model structure has several advantages, it also creates caveats for our results which are related to important areas for further research. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10584-021-03279-7.

8.
Sci Total Environ ; 837: 155816, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-35550898

RESUMO

The aerosols over the Tibetan Plateau (TP) play an important role in radiative budget and hydrologic cycle over Asia even the northern hemisphere. Adjacent to the major emission sources of air pollutants, transboundary pollutions transported to the TP due to the unique geographical location and climatic characteristics, is an important exogenous driver of multi-layer changes over the TP. The influence of boundary layer height (BLH) in India to the transboundary pollution over the TP from 1980 to 2018 was investigated in the study. Results showed that air pollutants transported to the TP is more efficient within the boundary layer compared with free troposphere. The BLH decreases with the rate of 1.8 m/season in these decades. Moreover, it also has a significant correlation with AOD (-0.4). Accompanied with westerly wind and the topographic forcing in the higher boundary layer, dust particles were uplifted from the northern India to the high altitude. Compared with a higher BLH, the lower BLH is difficult for the long transport of pollutants with weaker westerly wind over the TP and its difference of dust concentration with 0.2 µg m-3 in the upper troposphere. The solar radiation enhancement increases the sensible heat and accelerate the upward of the atmosphere in high BLH events, which uplifts the pollutants accumulated in lower troposphere to higher altitudes and provides thermodynamic conditions for the pollutants transorted to the TP with westerly winds. This study provides confidence for the source, long-term transport of the TP aerosol, and its environmental and climatic impacts on climate systems in the Northern Hemisphere.


Assuntos
Poluentes Atmosféricos , Monitoramento Ambiental , Aerossóis/análise , Poluentes Atmosféricos/análise , Poeira , Monitoramento Ambiental/métodos , Índia , Estações do Ano , Tibet
9.
J Agric Biol Environ Stat ; 26(1): 23-44, 2021 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-33867783

RESUMO

Fine particulate matter, PM2.5, has been documented to have adverse health effects and wildland fires are a major contributor to PM2.5 air pollution in the US. Forecasters use numerical models to predict PM2.5 concentrations to warn the public of impending health risk. Statistical methods are needed to calibrate the numerical model forecast using monitor data to reduce bias and quantify uncertainty. Typical model calibration techniques do not allow for errors due to misalignment of geographic locations. We propose a spatiotemporal downscaling methodology that uses image registration techniques to identify the spatial misalignment and accounts for and corrects the bias produced by such warping. Our model is fitted in a Bayesian framework to provide uncertainty quantification of the misalignment and other sources of error. We apply this method to different simulated data sets and show enhanced performance of the method in presence of spatial misalignment. Finally, we apply the method to a large fire in Washington state and show that the proposed method provides more realistic uncertainty quantification than standard methods.

10.
Ann Appl Stat ; 14(4): 1945-1963, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-35284031

RESUMO

Humans are concurrently exposed to chemically, structurally and toxicologically diverse chemicals. A critical challenge for environmental epidemiology is to quantify the risk of adverse health outcomes resulting from exposures to such chemical mixtures and to identify which mixture constituents may be driving etiologic associations. A variety of statistical methods have been proposed to address these critical research questions. However, they generally rely solely on measured exposure and health data available within a specific study. Advancements in understanding of the role of mixtures on human health impacts may be better achieved through the utilization of external data and knowledge from multiple disciplines with innovative statistical tools. In this paper we develop new methods for health analyses that incorporate auxiliary information about the chemicals in a mixture, such as physicochemical, structural and/or toxicological data. We expect that the constituents identified using auxiliary information will be more biologically meaningful than those identified by methods that solely utilize observed correlations between measured exposure. We develop flexible Bayesian models by specifying prior distributions for the exposures and their effects that include auxiliary information and examine this idea over a spectrum of analyses from regression to factor analysis. The methods are applied to study the effects of volatile organic compounds on emergency room visits in Atlanta. We find that including cheminformatic information about the exposure variables improves prediction and provides a more interpretable model for emergency room visits for respiratory diseases.

11.
J Am Stat Assoc ; 115(531): 1111-1124, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33716356

RESUMO

People are increasingly concerned with understanding their personal environment, including possible exposure to harmful air pollutants. In order to make informed decisions on their day-to-day activities, they are interested in real-time information on a localized scale. Publicly available, fine-scale, high-quality air pollution measurements acquired using mobile monitors represent a paradigm shift in measurement technologies. A methodological framework utilizing these increasingly fine-scale measurements to provide real-time air pollution maps and short-term air quality forecasts on a fine-resolution spatial scale could prove to be instrumental in increasing public awareness and understanding. The Google Street View study provides a unique source of data with spatial and temporal complexities, with the potential to provide information about commuter exposure and hot spots within city streets with high traffic. We develop a computationally efficient spatiotemporal model for these data and use the model to make short-term forecasts and high-resolution maps of current air pollution levels. We also show via an experiment that mobile networks can provide more nuanced information than an equally-sized fixed-location network. This modeling framework has important real-world implications in understanding citizens' personal environments, as data production and real-time availability continue to be driven by the ongoing development and improvement of mobile measurement technologies.

12.
PLoS One ; 12(1): e0170052, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28081273

RESUMO

The response of the Antarctic ice sheet (AIS) to changing climate forcings is an important driver of sea-level changes. Anthropogenic climate change may drive a sizeable AIS tipping point response with subsequent increases in coastal flooding risks. Many studies analyzing flood risks use simple models to project the future responses of AIS and its sea-level contributions. These analyses have provided important new insights, but they are often silent on the effects of potentially important processes such as Marine Ice Sheet Instability (MISI) or Marine Ice Cliff Instability (MICI). These approximations can be well justified and result in more parsimonious and transparent model structures. This raises the question of how this approximation impacts hindcasts and projections. Here, we calibrate a previously published and relatively simple AIS model, which neglects the effects of MICI and regional characteristics, using a combination of observational constraints and a Bayesian inversion method. Specifically, we approximate the effects of missing MICI by comparing our results to those from expert assessments with more realistic models and quantify the bias during the last interglacial when MICI may have been triggered. Our results suggest that the model can approximate the process of MISI and reproduce the projected median melt from some previous expert assessments in the year 2100. Yet, our mean hindcast is roughly 3/4 of the observed data during the last interglacial period and our mean projection is roughly 1/6 and 1/10 of the mean from a model accounting for MICI in the year 2100. These results suggest that missing MICI and/or regional characteristics can lead to a low-bias during warming period AIS melting and hence a potential low-bias in projected sea levels and flood risks.


Assuntos
Mudança Climática , Camada de Gelo , Modelos Teóricos , Regiões Antárticas , Teorema de Bayes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA