Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Front Plant Sci ; 10: 1152, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31616451

RESUMO

Rapeseed is one of the most important oilseed crops in the world. Improving the production of rapeseed is beneficial to relieve the shortage of edible vegetable oil. As the organ of support and transport, the main stem of rapeseed controls the plant architecture, transports the water and nutrients, and determines the number of inflorescence. Increasing the number of main stems would be helpful for the yield improvement in Brassica napus (B. napus). This attractive multi-main stem (MMS) trait was observed in the KN DH population. We investigated not only the frequency of MMS traits but also dissected the genetic basis with QTL mapping analysis and Gene-Fishing technique. A total of 43 QTLs were identified for MMS based on high-density linkage map, which explained 2.95-14.9% of the phenotypic variation, among which two environmental stable QTLs (cqMMS.A3-2 and cqMMS.C3-5) were identified in winter and semi-winter environments. Epistatic interaction analysis indicated cqMMS.C3-5 was an important loci for MMS. According to the functional annotation, 159 candidate genes within QTL confidence intervals, corresponding to 148 Arabidopsis thaliana (A. thaliana) homologous genes, were identified, which regulated lateral bud development and tiller of stem, such as shoot meristemless (STM), WUSCHEL-regulated-related genes, cytokinin response factors (CRF5), cytokinin oxidase (CKX4), gibberellin-regulated (RDK1), auxin-regulated gene (ARL, IAR4), and auxin-mediated signaling gene (STV1). Based on Gene-Fishing analysis between the natural plants and the double-main stem (DMS) plant, 31 differentially expressed genes (DEGs) were also obtained, which were related to differentiation and formation of lateral buds, biotic stimulus, defense response, drought and salt-stress responses, as well as cold-response functional genes. In addition, by combining the candidate genes in QTL regions with the DEGs that were obtained by Gene-Fishing technique, six common candidate genes (RPT2A, HLR, CRK, LRR-RLK, AGL79, and TCTP) were identified, which might probably be related to the formation of MMS phenotype. The present results not only would give a new insight into the genetic basis underlying the regulation of MMS but also would provide clues for plant architecture breeding in rapeseed.

2.
Plant Sci ; 277: 296-310, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30466595

RESUMO

Flowering time is an important agronomic trait that is highly influenced by the environment. To elucidate the genetic mechanism of flowering time in rapeseed (Brassica napus L.), a genome-wide QTL analysis was performed in a doubled haploid population grown in winter, semi-winter and spring ecological conditions. Fifty-five consensus QTLs were identified after combining phenotype and genomic data, including 12 environment-stable QTLs and 43 environment-specific QTLs. Importantly, six major QTLs for flowering time were identified, of which two were considered environment-specific QTLs in spring ecological condition and four were considered environment-stable QTLs in winter and semi-winter ecological conditions. Through QTL comparison, 18 QTLs were colocalized with QTLs from six other published studies. Combining the candidate genes with their functional annotation, in 49 of 55 consensus QTLs, 151 candidate genes in B. napus corresponding to 95 homologous genes in Arabidopsis thaliana related to flowering were identified, including BnaC03g32910D (CO), BnaA02g12130D (FT) and BnaA03g13630D (FLC). Most of the candidate genes were involved in different flowering regulatory pathways. Based on re-sequencing and differences in sequence annotation between the two parents, we found that regions containing some candidate genes have numerous non-frameshift InDels and many non- synonymous mutations, which might directly lead to gene functional variation. Flowering time was negativly correlated with seed yield and thousand seed weight based on a QTL comparison of flowering time and seed yield traits, which has implications in breeding new early-maturing varieties of B. napus. Moreover, a putative flowering regulatory network was constructed, including the photoperiod, circadian clock, vernalization, autonomous and gibberellin pathways. Multiple copies of genes led to functional difference among the different copies of homologous genes, which also increased the complexity of the flowering regulatory networks. Taken together, the present results not only provide new insights into the genetic regulatory network underlying the control of flowering time but also improve our understanding of flowering time regulatory pathways in rapeseed.


Assuntos
Brassica napus/fisiologia , Flores/fisiologia , Locos de Características Quantitativas/genética , Brassica napus/genética , Flores/genética , Redes Reguladoras de Genes/genética , Redes Reguladoras de Genes/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA