Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Nano Lett ; 24(21): 6240-6246, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38578061

RESUMO

Monolayer 2D semiconductors, such as WS2, exhibit uniquely strong light-matter interactions due to exciton resonances that enable atomically thin optical elements. Similar to geometry-dependent plasmon and Mie resonances, these intrinsic material resonances offer coherent and tunable light scattering. Thus far, the impact of the excitons' temporal dynamics on the performance of such excitonic metasurfaces remains unexplored. Here, we show how the excitonic decay rates dictate the focusing efficiency of an atomically thin lens carved directly out of exfoliated monolayer WS2. By isolating the coherent exciton radiation from the incoherent background in the focus of the lens, we obtain a direct measure of the role of exciton radiation in wavefront shaping. Furthermore, we investigate the influence of exciton-phonon scattering by characterizing the focusing efficiency as a function of temperature, demonstrating an increased optical efficiency at cryogenic temperatures. Our results provide valuable insights into the role of excitonic light scattering in 2D nanophotonic devices.

2.
Adv Mater ; 33(39): e2102356, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34355435

RESUMO

The chemical bond is one of the most powerful, yet much debated concepts in chemistry, explaining property trends in solids. Recently, a novel type of chemical bonding was identified in several higher chalcogenides, characterized by a unique property portfolio, unconventional bond breaking, and sharing of about one electron between adjacent atoms. This metavalent bond is a fundamental type of bonding in solids, besides covalent, ionic, and metallic bonding, raising the pertinent question as to whether there is a well-defined transition between metavalent and covalent bonds. Here, three different pseudo-binary lines, namely, GeTe1- x Sex , Sb2 Te3(1- x ) Se3 x , and Bi2-2 x Sb2 x Se3 , are studied, and a sudden change in several properties, including optical absorption ε2 (ω), optical dielectric constant ε∞ , Born effective charge Z*, electrical conductivity, as well as bond breaking behavior for a critical Se or Sb concentration, is evidenced. These findings provide a blueprint to experimentally explore the influence of metavalent bonding on attractive properties of phase-change materials and thermoelectrics. Particularly important is its impact on optical properties, which can be tailored by the amount of electrons shared between adjacent atoms. This correlation can be used to design optoelectronic materials and to explore systematic changes in chemical bonding with stoichiometry and atomic arrangement.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA