Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Nature ; 618(7963): 144-150, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37165196

RESUMO

Pancreatic ductal adenocarcinoma (PDAC) is lethal in 88% of patients1, yet harbours mutation-derived T cell neoantigens that are suitable for vaccines 2,3. Here in a phase I trial of adjuvant autogene cevumeran, an individualized neoantigen vaccine based on uridine mRNA-lipoplex nanoparticles, we synthesized mRNA neoantigen vaccines in real time from surgically resected PDAC tumours. After surgery, we sequentially administered atezolizumab (an anti-PD-L1 immunotherapy), autogene cevumeran (a maximum of 20 neoantigens per patient) and a modified version of a four-drug chemotherapy regimen (mFOLFIRINOX, comprising folinic acid, fluorouracil, irinotecan and oxaliplatin). The end points included vaccine-induced neoantigen-specific T cells by high-threshold assays, 18-month recurrence-free survival and oncologic feasibility. We treated 16 patients with atezolizumab and autogene cevumeran, then 15 patients with mFOLFIRINOX. Autogene cevumeran was administered within 3 days of benchmarked times, was tolerable and induced de novo high-magnitude neoantigen-specific T cells in 8 out of 16 patients, with half targeting more than one vaccine neoantigen. Using a new mathematical strategy to track T cell clones (CloneTrack) and functional assays, we found that vaccine-expanded T cells comprised up to 10% of all blood T cells, re-expanded with a vaccine booster and included long-lived polyfunctional neoantigen-specific effector CD8+ T cells. At 18-month median follow-up, patients with vaccine-expanded T cells (responders) had a longer median recurrence-free survival (not reached) compared with patients without vaccine-expanded T cells (non-responders; 13.4 months, P = 0.003). Differences in the immune fitness of the patients did not confound this correlation, as responders and non-responders mounted equivalent immunity to a concurrent unrelated mRNA vaccine against SARS-CoV-2. Thus, adjuvant atezolizumab, autogene cevumeran and mFOLFIRINOX induces substantial T cell activity that may correlate with delayed PDAC recurrence.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Carcinoma Ductal Pancreático , Ativação Linfocitária , Neoplasias Pancreáticas , Linfócitos T , Humanos , Adjuvantes Imunológicos/uso terapêutico , Antígenos de Neoplasias/imunologia , Vacinas Anticâncer/imunologia , Carcinoma Ductal Pancreático/genética , Carcinoma Ductal Pancreático/imunologia , Carcinoma Ductal Pancreático/terapia , Linfócitos T CD8-Positivos/citologia , Linfócitos T CD8-Positivos/imunologia , Imunoterapia , Ativação Linfocitária/imunologia , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/terapia , Linfócitos T/citologia , Linfócitos T/imunologia , Vacinas de mRNA
2.
Nature ; 606(7913): 389-395, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35589842

RESUMO

Cancer immunoediting1 is a hallmark of cancer2 that predicts that lymphocytes kill more immunogenic cancer cells to cause less immunogenic clones to dominate a population. Although proven in mice1,3, whether immunoediting occurs naturally in human cancers remains unclear. Here, to address this, we investigate how 70 human pancreatic cancers evolved over 10 years. We find that, despite having more time to accumulate mutations, rare long-term survivors of pancreatic cancer who have stronger T cell activity in primary tumours develop genetically less heterogeneous recurrent tumours with fewer immunogenic mutations (neoantigens). To quantify whether immunoediting underlies these observations, we infer that a neoantigen is immunogenic (high-quality) by two features-'non-selfness'  based on neoantigen similarity to known antigens4,5, and 'selfness'  based on the antigenic distance required for a neoantigen to differentially bind to the MHC or activate a T cell compared with its wild-type peptide. Using these features, we estimate cancer clone fitness as the aggregate cost of T cells recognizing high-quality neoantigens offset by gains from oncogenic mutations. With this model, we predict the clonal evolution of tumours to reveal that long-term survivors of pancreatic cancer develop recurrent tumours with fewer high-quality neoantigens. Thus, we submit evidence that that the human immune system naturally edits neoantigens. Furthermore, we present a model to predict how immune pressure induces cancer cell populations to evolve over time. More broadly, our results argue that the immune system fundamentally surveils host genetic changes to suppress cancer.


Assuntos
Antígenos de Neoplasias , Sobreviventes de Câncer , Neoplasias Pancreáticas , Antígenos de Neoplasias/genética , Antígenos de Neoplasias/imunologia , Humanos , Neoplasias Pancreáticas/genética , Neoplasias Pancreáticas/imunologia , Neoplasias Pancreáticas/patologia , Linfócitos T/imunologia , Evasão Tumoral/imunologia
3.
Cell Immunol ; 387: 104707, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36933326

RESUMO

MHC-I molecules of the HLA-B7 supertype preferentially bind peptides with proline at position 2. HLA-B*51:01 and B*51:08 present two predominant subpeptidomes, one with Pro2 and hydrophobic residues at P1, and another with Ala2 and Asp enriched at position 1. Here, we present a meta-analysis of the peptidomes presented by molecules of the B7 supertype to investigate the presence of subpeptidomes across different allotypes. Several allotypes presented subpeptidomes differing in the presence of Pro or another residue at P2. The Ala2 subpeptidomes preferred Asp1 except in HLA-B*54:01, where ligands with Ala2 contained Glu1. Sequence alignment and the analysis of crystal structures allowed us to propose positions 45 and 67 of the MHC heavy chain as relevant for the presence of subpeptidomes. Deciphering the principles behind the presence of subpeptidomes could improve our understanding of antigen presentation in other MHC-I molecules. Running title: HLA-B7 supertype subpeptidomes.


Assuntos
Antígeno HLA-B7 , Antígenos de Histocompatibilidade Classe I , Apresentação de Antígeno , Antígenos HLA-B/química , Antígenos HLA-B/metabolismo , Antígeno HLA-B7/química , Antígeno HLA-B7/metabolismo , Peptídeos/metabolismo , Humanos
4.
Mol Cell Proteomics ; 18(11): 2298-2309, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31530632

RESUMO

HLA-B*40:02 is one of a few major histocompatibility complex class I (MHC-I) molecules associated with ankylosing spondylitis (AS) independently of HLA-B*27. The endoplasmic reticulum aminopeptidase 2 (ERAP2), an enzyme that process MHC-I ligands and preferentially trims N-terminal basic residues, is also a risk factor for this disease. Like HLA-B*27 and other AS-associated MHC-I molecules, HLA-B*40:02 binds a relatively high percentage of peptides with ERAP2-susceptible residues. In this study, the effects of ERAP2 depletion on the HLA-B*40:02 peptidome were analyzed. ERAP2 protein expression was knocked out by CRISPR in the transfectant cell line C1R-B*40:02, and the differences between the peptidomes from the wild-type and ERAP2-KO cells were determined by label-free quantitative comparisons. The qualitative changes dependent on ERAP2 affected about 5% of the peptidome, but quantitative changes in peptide amounts were much more substantial, reflecting a significant influence of this enzyme on the generation/destruction balance of HLA-B*40:02 ligands. As in HLA-B*27, a major effect was on the frequencies of N-terminal residues. In this position, basic and small residues were increased, and aliphatic/aromatic ones decreased in the ERAP2 knockout. Other peptide positions were also affected. Because most of the non-B*27 MHC-I molecules associated with AS risk bind a relatively high percentage of peptides with N-terminal basic residues, we hypothesize that the non-epistatic association of ERAP2 with AS might be related to the processing of peptides with these residues, thus affecting the peptidomes of AS-associated MHC-I molecules.


Assuntos
Aminopeptidases/metabolismo , Antígenos HLA-B/metabolismo , Antígeno HLA-B27/metabolismo , Fragmentos de Peptídeos/metabolismo , Proteoma/análise , Espondilite Anquilosante/patologia , Aminopeptidases/antagonistas & inibidores , Aminopeptidases/genética , Sistemas CRISPR-Cas , Humanos , Ligação Proteica , Espondilite Anquilosante/metabolismo
5.
Mol Cell Proteomics ; 18(8): 1491-1510, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31092671

RESUMO

The endoplasmic reticulum aminopeptidases ERAP1 and ERAP2 trim peptides to be loaded onto HLA molecules, including the main risk factor for Behçet's disease HLA-B*51. ERAP1 is also a risk factor among HLA-B*51-positive individuals, whereas no association is known with ERAP2. This study addressed the mutual relationships between both enzymes in the processing of an HLA-bound peptidome, interrogating their differential association with Behçet's disease. CRISPR/Cas9 was used to generate knock outs of ERAP1, ERAP2 or both from transfectant 721.221-HLA-B*51:01 cells. The surface expression of HLA-B*51 was reduced in all cases. The effects of depleting each or both enzymes on the B*51:01 peptidome were analyzed by quantitative label-free mass spectrometry. Substantial quantitative alterations of peptide length, subpeptidome balance, N-terminal residue usage, affinity and presentation of noncanonical ligands were observed. These effects were often different in the presence or absence of the other enzyme, revealing their mutual dependence. In the absence of ERAP1, ERAP2 showed similar and significant processing of B*51:01 ligands, indicating functional redundancy. The high overlap between the peptidomes of wildtype and double KO cells indicates that a large majority of B*51:01 ligands are present in the ER even in the absence of ERAP1/ERAP2. These results indicate that both enzymes have distinct, but complementary and partially redundant effects on the B*51:01 peptidome, leading to its optimization and maximal surface expression. The distinct effects of both enzymes on the HLA-B*51 peptidome provide a basis for their differential association with Behçet's disease and suggest a pathogenetic role of the B*51:01 peptidome.


Assuntos
Aminopeptidases/metabolismo , Antígenos HLA-B/metabolismo , Antígenos de Histocompatibilidade Menor/metabolismo , Peptídeos/metabolismo , Aminopeptidases/genética , Síndrome de Behçet/metabolismo , Linhagem Celular , Antígenos HLA-B/genética , Humanos , Antígenos de Histocompatibilidade Menor/genética , Proteoma
6.
J Biol Chem ; 292(23): 9680-9689, 2017 06 09.
Artigo em Inglês | MEDLINE | ID: mdl-28446606

RESUMO

A low-activity variant of endoplasmic reticulum aminopeptidase 1 (ERAP1), Hap10, is associated with the autoinflammatory disorder Behçet's disease (BD) in epistasis with HLA-B*51, which is the main risk factor for this disorder. The role of Hap10 in BD pathogenesis is unknown. We sought to define the effects of Hap10 on the HLA-B*51 peptidome and to distinguish these effects from those due to HLA-B*51 polymorphisms unrelated to disease. The peptidome of the BD-associated HLA-B*51:08 subtype expressed in a Hap10-positive cell line was isolated, characterized by mass spectrometry, and compared with the HLA-B*51:01 peptidome from cells expressing more active ERAP1 allotypes. We additionally performed synthetic peptide digestions with recombinant ERAP1 variants and estimated peptide-binding affinity with standard algorithms. In the BD-associated ERAP1 context of B*51:08, longer peptides were generated; of the two major HLA-B*51 subpeptidomes with Pro-2 and Ala-2, the former one was significantly reduced, and the latter was increased and showed more ERAP1-susceptible N-terminal residues. These effects were readily explained by the low activity of Hap10 and the differential susceptibility of X-Pro and X-Ala bonds to ERAP1 trimming and together resulted in a significantly altered peptidome with lower affinity. The differences due to ERAP1 were clearly distinguished from those due to HLA-B*51 subtype polymorphism, which affected residue frequencies at internal positions of the peptide ligands. The alterations in the nature and affinity of HLA-B*51·peptide complexes probably affect T-cell and natural killer cell recognition, providing a sound basis for the joint association of ERAP1 and HLA-B*51 with BD.


Assuntos
Aminopeptidases/imunologia , Síndrome de Behçet/imunologia , Antígeno HLA-B51/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Peptídeos/imunologia , Polimorfismo Genético/imunologia , Aminopeptidases/genética , Síndrome de Behçet/genética , Linhagem Celular , Antígeno HLA-B51/genética , Humanos , Células Matadoras Naturais/imunologia , Antígenos de Histocompatibilidade Menor/genética , Peptídeos/genética , Domínios Proteicos , Linfócitos T/imunologia
7.
J Autoimmun ; 79: 28-38, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28063628

RESUMO

Ankylosing spondylitis (AS) is an inflammatory disease strongly associated with the Major Histocompatibility Complex class I (MHC-I) allotype HLA-B*27. The endoplasmic reticulum aminopeptidases (ERAP)1 and 2, which trim peptides to their optimal length for MHC-I binding, are also susceptibility factors for this disease. Both highly active ERAP1 variants and ERAP2 expression favor AS, whereas loss-of-function ERAP1 and loss-of-expression ERAP2 variants are protective. Yet, only ERAP1 is in epistasis with HLA-B*27. We addressed two issues concerning the functional interaction of ERAP1 and ERAP2 with the HLA-B*27 peptidome in human cells: 1) distinguishing the effects of ERAP1 from those of ERAP2, and 2) determining the influence of ERAP2 in distinct ERAP1 contexts. Quantitative comparisons of the HLA-B*27:05 peptidomes from cells with various ERAP1/ERAP2 phenotypes were carried out. When cells expressing ERAP2 and either high or low activity ERAP1 variants were compared, increased amounts of nonamers, relative to longer ligands, and decreased amounts of peptides with Ala1, were observed in the more active ERAP1 context. When cells expressing ERAP2 in a low activity ERAP1 context or lacking ERAP2 but expressing a highly active ERAP1 variant were compared, the same effects on peptide length and Ala1, but also significantly lower amounts of peptides with N-terminal basic residues and lower affinity of the peptidome, were observed in the ERAP2-positive context. Thus, ERAP1 and ERAP2 have significant and distinct effects on the HLA-B*27 peptidome, suggesting that both enzymes largely act as separate entities in vivo. This may explain their different patterns of association with AS.


Assuntos
Aminopeptidases/metabolismo , Antígeno HLA-B27/imunologia , Antígenos de Histocompatibilidade Menor/metabolismo , Peptídeos/imunologia , Fenótipo , Espondilite Anquilosante/imunologia , Espondilite Anquilosante/metabolismo , Aminopeptidases/genética , Linhagem Celular , Epitopos/química , Epitopos/imunologia , Expressão Gênica , Antígeno HLA-B27/química , Humanos , Ligantes , Antígenos de Histocompatibilidade Menor/genética , Peptídeos/química , Polimorfismo Genético , Ligação Proteica/imunologia , Espondilite Anquilosante/genética
8.
Cancer Cell ; 42(7): 1163-1184, 2024 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-38848720

RESUMO

Vaccines are the most impactful medicines to improve health. Though potent against pathogens, vaccines for cancer remain an unfulfilled promise. However, recent advances in RNA technology coupled with scientific and clinical breakthroughs have spurred rapid discovery and potent delivery of tumor antigens at speed and scale, transforming cancer vaccines into a tantalizing prospect. Yet, despite being at a pivotal juncture, with several randomized clinical trials maturing in upcoming years, several critical questions remain: which antigens, tumors, platforms, and hosts can trigger potent immunity with clinical impact? Here, we address these questions with a principled framework of cancer vaccination from antigen detection to delivery. With this framework, we outline features of emergent RNA technology that enable rapid, robust, real-time vaccination with somatic mutation-derived neoantigens-an emerging "ideal" antigen class-and highlight latent features that have sparked the belief that RNA could realize the enduring vision for vaccines against cancer.


Assuntos
Antígenos de Neoplasias , Vacinas Anticâncer , Neoplasias , Humanos , Vacinas Anticâncer/imunologia , Vacinas Anticâncer/uso terapêutico , Neoplasias/imunologia , Neoplasias/terapia , Neoplasias/genética , Antígenos de Neoplasias/imunologia , Antígenos de Neoplasias/genética , Vacinas de mRNA , Animais , Vacinação/métodos
9.
Arthritis Rheumatol ; 68(10): 2466-75, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27110896

RESUMO

OBJECTIVE: To determine the influence of endoplasmic reticulum aminopeptidase 2 (ERAP-2) expression on the HLA-B*27 peptidome in live cells. METHODS: Using immunoaffinity chromatography and acid extraction, HLA-B*27:05-bound peptides were isolated from 2 ERAP-2-negative lymphoblastoid cell lines and 1 ERAP-2-positive lymphoblastoid cell line expressing functionally indistinguishable ERAP-1 variants. More than 2,000-4,000 B*27:05 ligands were identified from each cell line, and their relative abundance was established by quantitative tandem mass spectrometry and MaxQuant-based peptide analyses. Pairwise comparisons were used to determine the structural features of peptides whose relative abundance was dependent on the presence of ERAP-2. Synthetic peptide digestions were performed with recombinant ERAP-1 and ERAP-2. Peptide affinity was estimated with standard algorithms. RESULTS: The B*27:05 peptidome from ERAP-2-positive cells showed 3-4% fewer peptides with N-terminal basic residues than did the peptidome from ERAP-2-negative cells. Among the shared peptides, those most abundant in the presence of ERAP-2 included more nonamers, fewer decamers, and fewer N-terminal basic residues than the peptides predominant in ERAP-2-negative cells. These ERAP-2-dependent changes did not alter the global affinity of the B*27:05 peptidome. CONCLUSION: ERAP-2 significantly influences the B*27:05-bound peptidome by destroying some ligands and decreasing the abundance of many more ligands with N-terminal basic residues, while increasing the abundance of nonamers. The former effects are best explained by direct ERAP-2 trimming. The effects on peptide length might be attributed to ERAP-2-induced activation of ERAP-1 trimming. These data support the notion of a peptide-mediated mechanism as the basis for the association of ERAP-2 with ankylosing spondylitis. Analogous effects on other major histocompatibility complex class I peptidomes might explain the involvement of ERAP-2 in HLA-B27-negative spondyloarthritis.


Assuntos
Aminopeptidases/metabolismo , Antígeno HLA-B27/metabolismo , Linfócitos/metabolismo , Peptídeos/metabolismo , Espondilite Anquilosante/metabolismo , Aminopeptidases/genética , Aminopeptidases/farmacologia , Western Blotting , Linhagem Celular , Genótipo , Humanos , Antígenos de Histocompatibilidade Menor/genética , Antígenos de Histocompatibilidade Menor/farmacologia , Reação em Cadeia da Polimerase , Proteínas Recombinantes , Espectrometria de Massas em Tandem
10.
Mol Immunol ; 77: 193-204, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27522479

RESUMO

The inflammatory diseases that are most strongly associated with major histocompatibility Complex class I (MHC-I) alleles are also influenced by endoplasmic reticulum aminopeptidase (ERAP) 1 and/or 2, often in epistasis with the susceptibility MHC-I allele. This review will focus on the four major MHC-I-associated inflammatory disorders: ankylosing spondylitis, birdshot chorioretinopathy, Behçet's disease and psoriasis. The genetics of ERAP1/ERAP2 association and the alterations induced by polymorphism of these enzymes on the risk MHC-I allotypes will be examined. A pattern emerges of analogous effects on peptide length, sequence and affinity of disparate peptidomes, suggesting that similar peptide-mediated mechanisms underlie the pathogenesis and the joint contribution of ERAP1/ERAP2 and MHC-I to distinct inflammatory diseases. Processing of specific antigens, peptide-dependent changes in global properties of the MHC-I molecules, such as folding and stability, or both may be pathogenic.


Assuntos
Aminopeptidases/imunologia , Antígenos de Histocompatibilidade Classe I/imunologia , Inflamação/imunologia , Antígenos de Histocompatibilidade Menor/imunologia , Aminopeptidases/genética , Animais , Síndrome de Behçet/genética , Síndrome de Behçet/imunologia , Coriorretinopatia de Birdshot , Coriorretinite/genética , Coriorretinite/imunologia , Predisposição Genética para Doença , Humanos , Inflamação/genética , Antígenos de Histocompatibilidade Menor/genética , Polimorfismo de Nucleotídeo Único , Psoríase/genética , Psoríase/imunologia , Espondilite Anquilosante/genética , Espondilite Anquilosante/imunologia
11.
Arthritis Rheumatol ; 68(2): 505-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-26360328

RESUMO

OBJECTIVE: To characterize the peptidome of the Behçet's disease-associated HLA-B*51:01 allotype as well as the differential features of major peptide subsets and their distinct endoplasmic reticulum aminopeptidase 1 (ERAP-1)-mediated processing. METHODS: The endogenous B*51:01-bound peptidome was characterized from 721.221 transfectant cells, after affinity chromatography and acid extraction, by tandem mass spectrometry. Recombinant ERAP-1 variants were used to digest synthetic B*51:01 ligands. HLA and transporter associated with antigen processing (TAP) binding affinities of peptide ligands were calculated with well-established algorithms. ERAP-1 and ERAP-2 from 721.221 cells were characterized by genomic sequencing and Western blotting. RESULTS: The B*51:01 peptidome consisted of 29.5% octamers, 61.7% nonamers, 4.8% decamers, and 4.0% longer peptides. The major peptide motif consisted of Pro and Ala at position 2, aliphatic/aromatic position 3 residues, and Val and Ile at the C-terminal position. The ligands with Pro or Ala at position 2 constituted 2 distinct subpeptidomes. Peptides with Pro at position 2 showed higher affinity for B*51:01 and lower affinity for TAP than those with Ala at position 2. Most important, both peptide subsets differed drastically in the susceptibility of their position 1 residues to ERAP-1, revealing a distinct influence of this enzyme on both subpeptidomes, which may alter their balance, affecting the global affinity of B*51:01-peptide complexes. CONCLUSION: ERAP-1 has a significant influence on the B*51:01 peptidome and its affinity. This influence is based on very distinct effects on the 2 subpeptidomes, whereby only peptides in the subpeptidome with Ala at position 2 are extensively destroyed, except when their position 1 residues are ERAP-1 resistant. This pattern provides a mechanism for the epistatic association of ERAP-1 and B*51:01 in Behçet's disease.


Assuntos
Aminopeptidases/genética , Síndrome de Behçet/metabolismo , Antígeno HLA-B51/metabolismo , Peptídeos/metabolismo , Transportadores de Cassetes de Ligação de ATP/metabolismo , Aminopeptidases/metabolismo , Linhagem Celular , Cromatografia de Afinidade , Genótipo , Humanos , Antígenos de Histocompatibilidade Menor , Polimorfismo de Nucleotídeo Único , Espectrometria de Massas em Tandem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA