Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 40
Filtrar
Mais filtros

Tipo de documento
Intervalo de ano de publicação
1.
J Neurochem ; 157(6): 1789-1808, 2021 06.
Artigo em Inglês | MEDLINE | ID: mdl-32931038

RESUMO

Pannexin-1 (Panx1) forms plasma membrane channels that allow the exchange of small molecules between the intracellular and extracellular compartments, and are involved in diverse physiological and pathological responses in the nervous system. However, the signaling mechanisms that induce their opening still remain elusive. Here, we propose a new mechanism for Panx1 channel activation through a functional crosstalk with the highly Ca2+ permeable α7 nicotinic acetylcholine receptor (nAChR). Consistent with this hypothesis, we found that activation of α7 nAChRs induces Panx1-mediated dye uptake and ATP release in the neuroblastoma cell line SH-SY5Y-α7. Using membrane permeant Ca2+ chelators, total internal reflection fluorescence microscopy in SH-SY5Y-α7 cells expressing a membrane-tethered GCAMP3, and Src kinase inhibitors, we further demonstrated that Panx1 channel opening depends on Ca2+ signals localized in submembrane areas, as well as on Src kinases. In turn, Panx1 channels amplify cytosolic Ca2+ signals induced by the activation of α7 nAChRs, by a mechanism that seems to involve ATP release and P2X7 receptor activation, as hydrolysis of extracellular ATP with apyrase or blockage of P2X7 receptors with oxidized ATP significantly reduces the α7 nAChR-Ca2+ signal. The physiological relevance of this crosstalk was also demonstrated in neuroendocrine chromaffin cells, wherein Panx1 channels and P2X7 receptors contribute to the exocytotic release of catecholamines triggered by α7 nAChRs, as measured by amperometry. Together these findings point to a functional coupling between α7 nAChRs, Panx1 channels and P2X7 receptors with physiological relevance in neurosecretion.


Assuntos
Células Cromafins/metabolismo , Conexinas/metabolismo , Exocitose/fisiologia , Proteínas do Tecido Nervoso/metabolismo , Receptor Cross-Talk/fisiologia , Receptores Purinérgicos P2X7/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Animais , Quelantes de Cálcio/farmacologia , Sinalização do Cálcio/efeitos dos fármacos , Sinalização do Cálcio/fisiologia , Bovinos , Linhagem Celular Tumoral , Células Cromafins/efeitos dos fármacos , Exocitose/efeitos dos fármacos , Humanos , Camundongos , Receptor Cross-Talk/efeitos dos fármacos
2.
J Neurochem ; 151(6): 703-715, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31418818

RESUMO

ß-Subunits of the Ca2+ channel have been conventionally regarded as auxiliary subunits that regulate the expression and activity of the pore-forming α1 subunit. However, they comprise protein-protein interaction domains, such as a SRC homology 3 domain (SH3) domain, which make them potential signaling molecules. Here we evaluated the role of the ß2a subunit of the Ca2+ channels (CaV ß2a) and its SH3 domain (ß2a-SH3) in late stages of channel trafficking in bovine adrenal chromaffin cells. Cultured bovine adrenal chromaffin cells were injected with CaV ß2a or ß2a-SH3 under different conditions, in order to acutely interfere with endogenous associations of these proteins. As assayed by whole-cell patch clamp recordings, Ca2+ currents were reduced by CaV ß2a in the presence of exogenous α1-interaction domain. ß2a-SH3, but not its dimerization-deficient mutant, also reduced Ca2+ currents. Na+ currents were also diminished following ß2a-SH3 injection. Furthermore, ß2a-SH3 was still able to reduce Ca2+ currents when dynamin-2 function was disrupted, but not when SNARE-dependent exocytosis or actin polymerization was inhibited. Together with the additional finding that both CaV ß2a and ß2a-SH3 diminished the incorporation of new actin monomers to cortical actin filaments, ß2a-SH3 emerges as a signaling module that might down-regulate forward trafficking of ion channels by modulating actin dynamics.


Assuntos
Actinas/metabolismo , Canais de Cálcio Tipo L/metabolismo , Células Cromafins/metabolismo , Regulação para Baixo/fisiologia , Domínios de Homologia de src/fisiologia , Animais , Bovinos , Células Cultivadas , Subunidades Proteicas/metabolismo , Transporte Proteico/fisiologia , Coelhos
3.
Front Neuroendocrinol ; 43: 44-59, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27693730

RESUMO

The neuroprotective effects of menopausal hormonal therapy in Parkinson's disease (PD) have not yet been clarified, and it is controversial whether there is a critical period for neuroprotection. Studies in animal models and clinical and epidemiological studies indicate that estrogens induce dopaminergic neuroprotection. Recent studies suggest that inhibition of the brain renin-angiotensin system (RAS) mediates the effects of estrogens in PD models. In the substantia nigra, ovariectomy induces a decrease in levels of estrogen receptor-α (ER-α) and increases angiotensin activity, NADPH-oxidase activity and expression of neuroinflammatory markers, which are regulated by estrogen replacement therapy. There is a critical period for the neuroprotective effect of estrogen replacement therapy, and local ER-α and RAS play a major role. Astrocytes play a major role in ER-α-induced regulation of local RAS, but neurons and microglia are also involved. Interestingly, treatment with angiotensin receptor antagonists after the critical period induced neuroprotection.


Assuntos
Neurônios Dopaminérgicos/metabolismo , Estrogênios/metabolismo , Menopausa/metabolismo , Degeneração Neural/metabolismo , Fármacos Neuroprotetores/metabolismo , Doença de Parkinson/metabolismo , Sistema Renina-Angiotensina/fisiologia , Animais , Humanos
4.
Brain Behav Immun ; 62: 277-290, 2017 May.
Artigo em Inglês | MEDLINE | ID: mdl-28232171

RESUMO

Dopamine is an immunomodulatory molecule that acts on immune effector cells both in the CNS and peripheral tissues. However, the role of changes in dopamine levels in the neuroinflammatory response is controversial. The local/paracrine renin-angiotensin system (RAS) plays a major role in inflammatory processes in peripheral tissues and brain. In the present study, we investigated the possible role of the brain RAS in the effects of dopamine on the glial inflammatory responses. Astrocytes are the major source of the precursor protein angiotensinogen and angiotensin II (AII) in the brain. Neurotoxins such as MPP+ (1-methyl-4-phenylpyridinium) can act directly on astrocytes to increase levels of angiotensinogen and AII. Conversely, dopamine, via type-2 (D2) receptors, inhibited production of angiotensinogen, decreased expression of angiotensin type-1 (AT1) receptors and increased expression of AT2 receptors. In microglia, dopamine and dopamine agonists also regulated RAS activity. First, indirectly, via downregulation of the astrocyte-derived AII. Second, via dopamine-induced regulation of microglial angiotensin receptors. Dopamine decreased the microglial AT1/AT2 ratio leading to inhibition of the pro-inflammatory AT1/NADPH-oxidase/superoxide axis. D2 receptors were particularly responsible for microglial RAS inhibition in basal culture conditions. However, both D1 and D2 agonists inhibited the AT1/NADPH-oxidase axis in lipopolysaccharide-treated (LPS; i.e. activated) microglia. The results indicate that the decrease in dopamine levels observed in early stages of Parkinson's disease and aging may promote neuroinflammation and disease progression via glial RAS exacerbation.


Assuntos
Angiotensinogênio/metabolismo , Astrócitos/efeitos dos fármacos , Dopamina/farmacologia , Microglia/efeitos dos fármacos , Sistema Renina-Angiotensina/efeitos dos fármacos , 1-Metil-4-fenilpiridínio/farmacologia , Animais , Animais Recém-Nascidos , Astrócitos/metabolismo , Benzazepinas/farmacologia , Células Cultivadas , Antagonistas de Dopamina/farmacologia , Microglia/metabolismo , Ratos , Ratos Sprague-Dawley , Salicilamidas/farmacologia
5.
Eur J Immunol ; 45(9): 2615-27, 2015 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-26115479

RESUMO

Delta-like protein 1 (DLK1) is a noncanonical ligand that inhibits NOTCH1 receptor activity and regulates multiple differentiation processes. In macrophages, NOTCH signaling increases TLR-induced expression of key pro-inflammatory mediators. We have investigated the role of DLK1 in macrophage activation and inflammation using Dlk1-deficient mice and Raw 264.7 cells overexpressing Dlk1. In the absence of Dlk1, NOTCH1 expression is increased and the activation of macrophages with TLR3 or TLR4 agonists leads to higher production of IFN-ß and other pro-inflammatory cytokines, including TNF-α, IL-12, and IL-23. The expression of key proteins involved in IFN-ß signaling, such as IRF3, IRF7, IRF1, or STAT1, as well as cRel, or RelB, which are responsible for the generation of IL-12 and IL-23, is enhanced in Dlk1 KO macrophages. Consistently, Dlk1 KO mice are more sensitive to LPS-induced endotoxic shock. These effects seem to be mediated through the modulation of NOTCH1 signaling. TLR4 activation reduces DLK1 expression, whereas increases NOTCH1 levels. In addition, DLK1 expression diminishes during differentiation of human U937 cells to macrophages. Overall, these results reveal a novel role for DLK1 as a regulator of NOTCH-mediated, pro-inflammatory macrophage activation, which could help to ensure a baseline level preventing constant tissue inflammation.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/imunologia , Macrófagos/imunologia , Receptor Notch1/imunologia , Receptor 3 Toll-Like/imunologia , Receptor 4 Toll-Like/imunologia , Animais , Proteínas de Ligação ao Cálcio , Diferenciação Celular , Linhagem Celular , Regulação da Expressão Gênica , Humanos , Inflamação/genética , Inflamação/imunologia , Inflamação/patologia , Peptídeos e Proteínas de Sinalização Intercelular/genética , Fatores Reguladores de Interferon/genética , Fatores Reguladores de Interferon/imunologia , Interferon beta/genética , Interferon beta/imunologia , Interleucina-12/genética , Interleucina-12/imunologia , Interleucina-23/genética , Interleucina-23/imunologia , Ativação de Macrófagos , Macrófagos/citologia , Camundongos , Camundongos Knockout , Receptor Notch1/genética , Fator de Transcrição STAT1/genética , Fator de Transcrição STAT1/imunologia , Transdução de Sinais , Receptor 3 Toll-Like/genética , Receptor 4 Toll-Like/genética , Fator de Transcrição RelB/genética , Fator de Transcrição RelB/imunologia , Fator de Necrose Tumoral alfa/genética , Fator de Necrose Tumoral alfa/imunologia , Células U937
6.
Glia ; 63(3): 466-82, 2015 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-25377425

RESUMO

Previous studies have shown that the brain renin-angiotensin system may play a major role, via angiotensin type 1 (AT1) receptors, in the regulation of neuroinflammation, oxidative stress and progression of dopaminergic degeneration. Angiotensin-induced activation of the microglial nicotinamide adenine dinucleotide phosphate (NADPH)-oxidase complex and microglial Rho-kinase are particularly important in this respect. However, it is not known whether crosstalk between Rho-kinase and NADPH-oxidase leads to microglial activation. In the present study, we found that, in the substantia nigra of rats, NADPH-oxidase activation was involved in angiotensin-induced Rho-kinase activation, which, in turn, was involved in angiotensin-induced NADPH-oxidase activation. In N9 microglial cell line and primary microglial cultures, a crosstalk signaling between NADPH-oxidase and Rho-kinase occurred in a positive feedback fashion during angiotensin-induced microglial activation. Angiotensin-induced NADPH-oxidase activation and superoxide generation led to NF-кB translocation and Rho-kinase activation. Rho-kinase activation was involved in regulation of NADPH-oxidase activation via p38 mitogen-activated protein kinase. Moreover, Rho-kinase activation, via NF-кB, upregulated AT1 receptor expression in microglial cells through a feed-forward mechanism. NADPH-oxidase and Rho-kinase pathways are known to be responsible for major components of the microglial response, such as changes involving microglial motility and phagocytosis, generation of superoxide, and release of inflammatory cytokines. The present results show that both pathways are linked by a common mechanism that may constitute a basic means of coordinating the microglial response.


Assuntos
Angiotensina II/metabolismo , Microglia/enzimologia , NADPH Oxidases/metabolismo , Quinases Associadas a rho/metabolismo , Animais , Linhagem Celular , Células Cultivadas , Masculino , Camundongos , NF-kappa B/metabolismo , Ratos Sprague-Dawley , Receptor Tipo 1 de Angiotensina/metabolismo , Substância Negra/imunologia , Superóxidos/metabolismo , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo
7.
Glia ; 62(1): 145-57, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24272709

RESUMO

In vitro and in vivo models of Parkinson's disease were used to investigate whether TNF-α plays a major role in the enhancement of the microglial response and dopaminergic degeneration induced by brain angiotensin hyperactivity. Treatment of primary mesencephalic cultures with low doses of the neurotoxin MPP(+) induced a significant loss of dopaminergic neurons, which was enhanced by cotreatment with angiotensin II and inhibited by TNF-α inhibitors. Treatment of primary cultures with angiotensin induced a marked increase in levels of TNF-α, which was inhibited by treatment with angiotensin type-1-receptor antagonists, NADPH-oxidase inhibitors and NFK-ß inhibitors. However, TNF-α levels were not significantly affected by treatment with angiotensin in the absence of microglia. The microglial origin of the angiotensin-induced increase in TNF-α levels was confirmed using dopaminergic (MES 23.5) and microglial (N9) cell lines. Inhibition of the microglial Rho-kinase activity also blocked the AII-induced increase in TNF-α levels. Treatment of the dopaminergic cell line with TNF-α revealed that NFK-ß activation mediates the deleterious effect of microglial TNF-α on dopaminergic neurons. Treatment of mice with MPTP also induced significant increases in striatal and nigral TNF-α levels, which were inhibited by angiotensin type-1-receptor antagonists or NFK-ß inhibitors. The present results show that microglial TNF-α plays a major role in angiotensin-induced dopaminergic cell death and that the microglial release of TNF-α is mediated by activation of angiotensin type-1 receptors, NADPH-oxidase, Rho-kinase and NFK-ß.


Assuntos
Neurônios Dopaminérgicos/patologia , Calicreínas/metabolismo , Microglia/metabolismo , Degeneração Neural/fisiopatologia , Extratos Pancreáticos/metabolismo , Fator de Necrose Tumoral alfa/metabolismo , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Animais , Benzimidazóis/farmacologia , Compostos de Bifenilo , Células Cultivadas , CMP Cíclico/análogos & derivados , CMP Cíclico/farmacologia , Neurônios Dopaminérgicos/efeitos dos fármacos , Relação Dose-Resposta a Droga , Inibidores Enzimáticos/farmacologia , Masculino , Mesencéfalo/citologia , Camundongos , Camundongos Endogâmicos C57BL , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Neurônios/efeitos dos fármacos , Neurônios/fisiologia , Neurotoxinas/farmacologia , Tetrazóis/farmacologia
8.
Transl Neurodegener ; 13(1): 22, 2024 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-38622720

RESUMO

The renin-angiotensin system (RAS) was classically considered a circulating hormonal system that regulates blood pressure. However, different tissues and organs, including the brain, have a local paracrine RAS. Mutual regulation between the dopaminergic system and RAS has been observed in several tissues. Dysregulation of these interactions leads to renal and cardiovascular diseases, as well as progression of dopaminergic neuron degeneration in a major brain center of dopamine/angiotensin interaction such as the nigrostriatal system. A decrease in the dopaminergic function induces upregulation of the angiotensin type-1 (AT1) receptor activity, leading to recovery of dopamine levels. However, AT1 receptor overactivity in dopaminergic neurons and microglial cells upregulates the cellular NADPH-oxidase-superoxide axis and Ca2+ release, which mediate several key events in oxidative stress, neuroinflammation, and α-synuclein aggregation, involved in Parkinson's disease (PD) pathogenesis. An intraneuronal antioxidative/anti-inflammatory RAS counteracts the effects of the pro-oxidative AT1 receptor overactivity. Consistent with this, an imbalance in RAS activity towards the pro-oxidative/pro-inflammatory AT1 receptor axis has been observed in the substantia nigra and striatum of several animal models of high vulnerability to dopaminergic degeneration. Interestingly, autoantibodies against angiotensin-converting enzyme 2 and AT1 receptors are increased in PD models and PD patients and contribute to blood-brain barrier (BBB) dysregulation and nigrostriatal pro-inflammatory RAS upregulation. Therapeutic strategies addressed to the modulation of brain RAS, by AT1 receptor blockers (ARBs) and/or activation of the antioxidative axis (AT2, Mas receptors), may be neuroprotective for individuals with a high risk of developing PD or in prodromal stages of PD to reduce progression of the disease.


Assuntos
Doença de Parkinson , Sistema Renina-Angiotensina , Animais , Humanos , Antagonistas de Receptores de Angiotensina/farmacologia , Angiotensinas/metabolismo , Pressão Sanguínea , Encéfalo/metabolismo , Dopamina , Doença de Parkinson/patologia , Receptor Tipo 1 de Angiotensina/metabolismo , Sistema Renina-Angiotensina/fisiologia
9.
Neurobiol Dis ; 58: 209-19, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23774254

RESUMO

The mechanism by which estrogen protects dopaminergic neurons has not yet been clarified. It is not known if changes in RhoA/Rho kinase activity are involved in the enhanced vulnerability of dopaminergic neurons observed after estrogen depletion. The present study shows that the MPTP-induced loss of dopaminergic neurons is increased by estrogen depletion and inhibited by estrogen replacement, the Rho kinase inhibitor Y27632 and deletion of the angiotensin type-1 receptor. In ovariectomized mice, treatment with MPTP induced a marked increase in Rho kinase activity, and RhoA and RhocK II mRNA and protein expression, which were significantly higher than in ovariectomized mice treated with MPTP and estrogen replacement or type-1 receptor deletion. Estrogen depletion increased Rho kinase activity, via enhancement of the angiotensin type-1 receptor pathway, and Rho kinase activation increased type-1 receptor expression suggesting a vicious cycle in which Rho kinase and type-1 receptor activate each other and promote the degenerative process. The results suggest that type-1 receptor antagonists and Rho kinase inhibitors may provide a new neuroprotective strategy, which may circumvent the potential risks of estrogen replacement therapy and be particularly useful in elderly women or women affected by long-term lack of estrogen.


Assuntos
Estradiol/uso terapêutico , Intoxicação por MPTP/tratamento farmacológico , Fármacos Neuroprotetores/uso terapêutico , Quinases Associadas a rho/metabolismo , Amidas/administração & dosagem , Bloqueadores do Receptor Tipo 1 de Angiotensina II/administração & dosagem , Animais , Benzimidazóis/administração & dosagem , Compostos de Bifenilo , Modelos Animais de Doenças , Inibidores Enzimáticos/administração & dosagem , Feminino , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Atividade Motora/efeitos dos fármacos , Ovariectomia , Piridinas/administração & dosagem , Receptor Tipo 1 de Angiotensina/deficiência , Tetrazóis/administração & dosagem , Tirosina 3-Mono-Oxigenase/metabolismo , Quinases Associadas a rho/antagonistas & inibidores
10.
Brain ; 135(Pt 1): 124-38, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22189567

RESUMO

There is a lack of consensus about the effects of the type of menopause (surgical or natural) and of oestrogen replacement therapy on Parkinson's disease. The effects of the timing of replacement therapy and the female's age may explain the observed differences in such effects. However, the mechanisms involved are poorly understood. The renin-angiotensin system mediates the beneficial effects of oestrogen in several tissues, and we have previously shown that dopaminergic cell loss is enhanced by angiotensin via type 1 receptors, which is activated by ageing. In rats, we compared the effects of oestrogen replacement therapy on 6-hydroxydopamine-induced dopaminergic degeneration, nigral renin-angiotensin system activity, activation of the nicotinamide adenine dinucleotide phosphate oxidase complex and levels of the proinflammatory cytokine interleukin-1ß in young (surgical) menopausal rats and aged menopausal rats. In young surgically menopausal rats, the renin-angiotensin system activity was higher (i.e. higher angiotensin converting enzyme activity, higher angiotensin type-1 receptor expression and lower angiotensin type-2 receptor expression) than in surgically menopausal rats treated with oestrogen; the nicotinamide adenine dinucleotide phosphate oxidase activity and interleukin-1ß expression were also higher in the first group than in the second group. In aged menopausal rats, the levels of nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity were similar to those observed in surgically menopausal rats. However, oestrogen replacement therapy significantly reduced 6-hydroxydopamine-induced dopaminergic cell loss in young menopausal rats but not in aged rats. Treatment with oestrogen also led to a more marked reduction in nigral renin-angiotensin and nicotinamide adenine dinucleotide phosphate oxidase activity in young surgically menopausal rats (treated either immediately or after a period of hypo-oestrogenicity) than in aged menopausal rats. Interestingly, treatment with the angiotensin type-1 receptor antagonist candesartan led to remarkable reduction in renin-angiotensin system activity and dopaminergic neuron loss in both groups of menopausal rats. This suggests that manipulation of the brain renin-angiotensin system may be an efficient approach for the prevention or treatment of Parkinson's disease in oestrogen-deficient females, together with or instead of oestrogen replacement therapy.


Assuntos
Corpo Estriado/efeitos dos fármacos , Neurônios Dopaminérgicos/efeitos dos fármacos , Estradiol/análogos & derivados , Degeneração Neural/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Sistema Renina-Angiotensina/efeitos dos fármacos , Bloqueadores do Receptor Tipo 1 de Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Animais , Benzimidazóis/farmacologia , Benzimidazóis/uso terapêutico , Compostos de Bifenilo , Corpo Estriado/metabolismo , Neurônios Dopaminérgicos/metabolismo , Estradiol/farmacologia , Estradiol/uso terapêutico , Terapia de Reposição de Estrogênios , Feminino , Degeneração Neural/induzido quimicamente , Degeneração Neural/metabolismo , Fármacos Neuroprotetores/uso terapêutico , Ovariectomia , Oxidopamina/farmacologia , Ratos , Ratos Sprague-Dawley , Sistema Renina-Angiotensina/fisiologia , Tetrazóis/farmacologia , Tetrazóis/uso terapêutico
11.
Antioxidants (Basel) ; 12(7)2023 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-37507992

RESUMO

Statins have been proposed for L-DOPA-induced dyskinesia (LID) treatment. Statin anti-dyskinetic effects were related to the inhibition of the Ras-ERK pathway. However, the mechanisms responsible for the anti-LID effect are unclear. Changes in cholesterol homeostasis and oxidative stress- and inflammation-related mechanisms such as angiotensin II and Rho-kinase (ROCK) inhibition may be involved. The nigra and striatum of dyskinetic rats showed increased levels of cholesterol, ROCK, and the inflammatory marker IL-1ß, which were reduced by the angiotensin type-1 receptor (AT1) antagonist candesartan, simvastatin, and the ROCK inhibitor fasudil. As observed for LID, angiotensin II-induced, via AT1, increased levels of cholesterol and ROCK in the rat nigra and striatum. In cultured dopaminergic neurons, angiotensin II increased cholesterol biosynthesis and cholesterol efflux without changes in cholesterol uptake. In astrocytes, angiotensin induced an increase in cholesterol uptake, decrease in biosynthesis, and no change in cholesterol efflux, suggesting a neuronal accumulation of cholesterol that is reduced via transfer to astrocytes. Our data suggest mutual interactions between angiotensin/AT1, cholesterol, and ROCK pathways in LID, which are attenuated by the corresponding inhibitors. Interestingly, these three drugs have also been suggested as neuroprotective treatments against Parkinson's disease. Therefore, they may reduce dyskinesia and the progression of the disease using common mechanisms.

12.
Neurobiol Dis ; 47(2): 268-79, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22542954

RESUMO

It has recently been shown that the dopaminergic cell loss induced by neurotoxins is enhanced by brain angiotensin II (AII) via type 1 receptors (AT1). However, the mechanisms involved in the dopaminergic degeneration and the brain inflammatory effects of AII have not been clarified. The RhoA-Rho-Kinase (ROCK) pathway may play a critical role in the inflammatory and oxidative effects of AII. In the substantia nigra of mice, administration of the dopaminergic neurotoxin MPTP induced an increase in the expression of RhoA and ROCK II mRNA levels and ROCK activity, which were inhibited by AT1 receptor deletion (i.e., in AT1a null mice treated with MPTP). Administration of the ROCK inhibitor Y-27632 or AT1 deletion induced a significant decrease in MPTP-induced microglial activation and dopaminergic cell death. In rat primary mesencephalic cultures treated with MPP(+), the increase in dopaminergic cell loss induced by AII administration was also inhibited by treatment with Y27632. Intense expression of ROCK II was observed in the microglial cells in the substantia nigra of mice treated with MPTP, and the major role of the microglial ROCK was confirmed by comparing mesencephalic cultures with and without microglia. Activation of the RhoA/ROCK pathway is involved in the MPTP-induced dopaminergic degeneration, and in the enhancing effect of AII/AT1 activation on the microglial response and dopaminergic degeneration. ROCK inhibitors and AT1 receptor antagonists may provide new neuroprotective strategies against the progression of Parkinson's disease.


Assuntos
Angiotensinas/fisiologia , Neurônios Dopaminérgicos/metabolismo , Microglia/metabolismo , Receptor Tipo 1 de Angiotensina/fisiologia , Transdução de Sinais/fisiologia , Proteínas rho de Ligação ao GTP/fisiologia , Amidas/farmacologia , Amidas/uso terapêutico , Animais , Morte Celular/efeitos dos fármacos , Morte Celular/fisiologia , Células Cultivadas , Neurônios Dopaminérgicos/enzimologia , Neurônios Dopaminérgicos/patologia , Inibidores Enzimáticos/farmacologia , Inibidores Enzimáticos/uso terapêutico , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/enzimologia , Microglia/patologia , Doença de Parkinson/fisiopatologia , Doença de Parkinson/prevenção & controle , Piridinas/farmacologia , Piridinas/uso terapêutico , Quinases Associadas a rho/antagonistas & inibidores , Quinases Associadas a rho/fisiologia , Proteína rhoA de Ligação ao GTP
13.
J Neuroinflammation ; 9: 38, 2012 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-22356806

RESUMO

BACKGROUND: Several recent studies have shown that angiotensin type 1 receptor (AT1) antagonists such as candesartan inhibit the microglial inflammatory response and dopaminergic cell loss in animal models of Parkinson's disease. However, the mechanisms involved in the neuroprotective and anti-inflammatory effects of AT1 blockers in the brain have not been clarified. A number of studies have reported that AT1 blockers activate peroxisome proliferator-activated receptor gamma (PPAR γ). PPAR-γ activation inhibits inflammation, and may be responsible for neuroprotective effects, independently of AT1 blocking actions. METHODS: We have investigated whether oral treatment with telmisartan (the most potent PPAR-γ activator among AT1 blockers) provides neuroprotection against dopaminergic cell death and neuroinflammation, and the possible role of PPAR-γ activation in any such neuroprotection. We used a mouse model of parkinsonism induced by the dopaminergic neurotoxin 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP) and co-administration of the PPAR-γ antagonist GW9662 to study the role of PPAR-γ activation. In addition, we used AT1a-null mice lesioned with MPTP to study whether deletion of AT1 in the absence of any pharmacological effect of AT1 blockers provides neuroprotection, and investigated whether PPAR-γ activation may also be involved in any such effect of AT1 deletion by co-administration of the PPAR-γ antagonist GW9662. RESULTS: We observed that telmisartan protects mouse dopaminergic neurons and inhibits the microglial response induced by administration of MPTP. The protective effects of telmisartan on dopaminergic cell death and microglial activation were inhibited by co-administration of GW9662. Dopaminergic cell death and microglial activation were significantly lower in AT1a-null mice treated with MPTP than in mice not subjected to AT1a deletion. Interestingly, the protective effects of AT1 deletion were also inhibited by co-administration of GW9662. CONCLUSION: The results suggest that telmisartan provides effective neuroprotection against dopaminergic cell death and that the neuroprotective effect is mediated by PPAR-γ activation. However, the results in AT1-deficient mice show that blockage of AT1, unrelated to the pharmacological properties of AT1 blockers, also protects against dopaminergic cell death and neuroinflammation. Furthermore, the results show that PPAR-γ activation is involved in the anti-inflammatory and neuroprotective effects of AT1 deletion.


Assuntos
Bloqueadores do Receptor Tipo 1 de Angiotensina II/uso terapêutico , Benzimidazóis/uso terapêutico , Benzoatos/uso terapêutico , Encefalite/prevenção & controle , PPAR gama/metabolismo , Receptor Tipo 1 de Angiotensina/deficiência , 1-Metil-4-Fenil-1,2,3,6-Tetra-Hidropiridina/farmacologia , Análise de Variância , Anilidas/farmacologia , Animais , Encéfalo/efeitos dos fármacos , Encéfalo/metabolismo , Encéfalo/patologia , Morte Celular/efeitos dos fármacos , Modelos Animais de Doenças , Neurônios Dopaminérgicos/efeitos dos fármacos , Encefalite/etiologia , Encefalite/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/genética , Lectinas , Antígenos Comuns de Leucócito/metabolismo , Intoxicação por MPTP/induzido quimicamente , Intoxicação por MPTP/complicações , Masculino , Espectrometria de Massas , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Microglia/efeitos dos fármacos , Microglia/metabolismo , PPAR gama/antagonistas & inibidores , Telmisartan , Tirosina 3-Mono-Oxigenase/metabolismo
14.
BMC Mol Biol ; 12: 52, 2011 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-22185379

RESUMO

BACKGROUND: DLK2 is an EGF-like membrane protein, closely related to DLK1, which is involved in adipogenesis. Both proteins interact with the NOTCH1 receptor and are able to modulate its activation. The expression of the gene Dlk2 is coordinated with that of Dlk1 in several tissues and cell lines. Unlike Dlk1, the mouse Dlk2 gene and its locus at chromosome 17 are not fully characterized. RESULTS: The goal of this work was the characterization of Dlk2 mRNA, as well as the analysis of the mechanisms that control its basal transcription. First, we analyzed the Dlk2 transcripts expressed by several mouse cells lines and tissues, and mapped the transcription start site by 5' Rapid Amplification of cDNA Ends. In silico analysis revealed that Dlk2 possesses a TATA-less promoter containing minimal promoter elements associated with a CpG island, and sequences for Inr and DPE elements. Besides, it possesses six GC-boxes, considered as consensus sites for the transcription factor Sp1. Indeed, we report that Sp1 directly binds to the Dlk2 promoter, activates its transcription, and regulates its level of expression. CONCLUSIONS: Our results provide the first characterization of Dlk2 transcripts, map the location of the Dlk2 core promoter, and show the role of Sp1 as a key regulator of Dlk2 transcription, providing new insights into the molecular mechanisms that contribute to the expression of the Dlk2 gene.


Assuntos
Peptídeos e Proteínas de Sinalização Intercelular/genética , Elementos de Resposta , Fator de Transcrição Sp1/metabolismo , Animais , Sequência de Bases , Sítios de Ligação , Linhagem Celular , Ilhas de CpG , Regulação da Expressão Gênica , Ordem dos Genes , Inativação Gênica , Camundongos , Camundongos da Linhagem 129 , Camundongos Endogâmicos C3H , Camundongos Endogâmicos C57BL , Dados de Sequência Molecular , Motivos de Nucleotídeos , Regiões Promotoras Genéticas , RNA Mensageiro/química , RNA Interferente Pequeno , Fator de Transcrição Sp1/genética , Sítio de Iniciação de Transcrição , Transcrição Gênica , Ativação Transcricional
15.
Eur J Neurosci ; 32(10): 1695-706, 2010 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-20964730

RESUMO

The basal ganglia have a local renin-angiotensin system and it has been shown that the loss of dopaminergic neurons induced by neurotoxins is amplified by local angiotensin II (AII) via angiotensin type 1 receptors (AT1) and nicotinamide adenine dinucleotide phosphate (NADPH) complex activation. Recent studies have revealed a high degree of counter-regulatory interactions between dopamine and AII receptors in non-neural cells such as renal proximal tubule cells. However, it is not known if this occurs in the basal ganglia. In the striatum and nigra, depletion of dopamine with reserpine induced a significant increase in the expression of AT1, angiotensin type 2 receptors (AT2) and the NADPH subunit p47(phox) , which decreased as dopamine function was restored. Similarly, 6-hydroxydopamine-induced chronic dopaminergic denervation induced a significant increase in expression of AT1, AT2 and p47(phox) , which decreased with L-dopa administration. A significant reduction in expression of AT1 mRNA was also observed after administration of dopamine to cultures of microglial cells. Transgenic rats with very low levels of brain AII showed increased AT1, decreased p47 (phox) and no changes in AT2 expression, whereas mice deficient in AT1 exhibited a decrease in the expression of p47 (phox) and AT2. The administration of relatively high doses of AII (100 nm) decreased the expression of AT1, and the increased expression of AT2 and p47(phox) in primary mesencephalic cultures. The results reveal an important interaction between the dopaminergic and local renin-angiotensin system in the basal ganglia, which may be a major factor in the progression of Parkinson's disease.


Assuntos
Angiotensina II/metabolismo , Corpo Estriado/metabolismo , Dopamina/metabolismo , Doença de Parkinson/fisiopatologia , Receptor Tipo 1 de Angiotensina/metabolismo , Receptor Tipo 2 de Angiotensina/metabolismo , Substância Negra/metabolismo , Inibidores da Captação Adrenérgica/metabolismo , Animais , Corpo Estriado/citologia , Progressão da Doença , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , NADPH Oxidases/genética , NADPH Oxidases/metabolismo , Ratos , Ratos Sprague-Dawley , Ratos Transgênicos , Receptor Tipo 1 de Angiotensina/genética , Receptor Tipo 2 de Angiotensina/genética , Sistema Renina-Angiotensina/fisiologia , Reserpina/metabolismo , Substância Negra/citologia
16.
J Gerontol A Biol Sci Med Sci ; 75(3): 416-424, 2020 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-30412227

RESUMO

Sirtuin 3 (SIRT3) and angiotensin play a major role in aging-related disorders. Both modulate oxidative stress and neurodegeneration. We investigated the interaction between SIRT3 and angiotensin II (AngII) in the dopaminergic system. Both in vivo and in vitro, treatment with AngII decreased SIRT3 expression, which was reversed by angiotensin type 1 receptor (AT1) antagonists. Aged animals showed enhanced pro-oxidative RAS activity and low nigral SIRT3 levels, which significantly increased with treatment with the AT1 antagonist candesartan or AT1 deletion. Consistent with this, AT2 knockout mice and cells treated with AT2 blockers showed downregulation of SIRT3. Treatment with the specific SIRT3 inhibitor AGK7 induced overexpression of AT1 and AT2 in substantia nigra (SN) of rats, and in dopaminergic neuronal MES23.5 and microglial N9 cell lines. The results suggest that SIRT3 may initially counteract low levels of oxidative stress as part of the antioxidant response. However, high or persistent oxidative stress induced by overactivation of the angiotensin/AT1 pro-oxidative axis induces a decrease in nigral SIRT3 levels. Furthermore, a decrease in SIRT3 levels further increases AT1 activity, which may lead to a feed-forward mechanism. This is observed in aged rats and can be counteracted by treatment with AT1 antagonists such as candesartan.


Assuntos
Angiotensina II/fisiologia , Doenças Neurodegenerativas/etiologia , Estresse Oxidativo , Receptor Tipo 1 de Angiotensina/fisiologia , Sirtuína 3/metabolismo , Substância Negra/química , Substância Negra/metabolismo , Fatores Etários , Animais , Masculino , Camundongos , Ratos , Ratos Sprague-Dawley , Sirtuína 3/análise
17.
Oncotarget ; 9(13): 10834-10846, 2018 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-29541380

RESUMO

Gastrointestinal dysfunction is a common problem in the elderly. Aging-related changes in interactions between local dopaminergic and renin-angiotensin systems (RAS) have been observed in the brain, renal and vascular tissues. However, it is not known if these interactions also occur in the gut, and are dysregulated with aging. We showed a mutual regulation between the colonic dopaminergic system and RAS using young and aged mice deficient for major angiotensin and dopamine receptors. Aged rats showed a marked decrease in colonic dopamine D2 receptor expression, together with an increase in angiotensin type 1 (AT1) receptor expression, a decrease in angiotensin type 2 (AT2) receptor expression (i.e. an increase in the RAS pro-inflammatory arm activity), and increased levels of inflammatory and oxidative markers. Aged rats also showed increased levels of colonic dopamine and noradrenalin, and a marked decrease in acetylcholine and serotonin levels. The present observations contribute to explain an aging-related pro-inflammatory state and dysregulation in gastrointestinal function, which may be counteracted by treatment of aged animals with the AT1 receptor blocker candesartan.

18.
Mol Neurobiol ; 55(9): 7297-7316, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-29404956

RESUMO

The exact mechanism of gut dysfunction in Parkinson's disease and, conversely, the role of gut pathology in brain dopaminergic degeneration are controversial. We investigated the effects of nigral lesions on the colonic neurotransmission, the effect of gut inflammation on the nigrostriatal dopaminergic function, and the possible involvement of the vagus nerve and the local renin-angiotensin system (RAS). Nigrostriatal dopamine depletion was performed by bilateral injection 6-hydroxydopamine, and gut inflammation was induced by dextran sulfate sodium salt treatment in rats and mice, respectively, with or without vagal disruption. A decrease in central dopamine levels induced a decrease in colonic dopamine types 1 and 2 receptor expression together with an increase in the colonic levels of dopamine and a decrease in the levels of acetylcholine, which may explain a decrease in gut motility. Central dopaminergic depletion also induced an increase in the colonic levels of inflammatory and oxidative stress markers together with activation of the pro-inflammatory arm of the local RAS. Mice with acute (1 week) or subchronic (3 weeks) gut inflammation did not show a significant increase in colonic α-synuclein and phosphorylated α-synuclein expression during this relatively short survival period. Interestingly, we observed early changes in the nigrostriatal dopaminergic homeostasis, dopaminergic neuron death, and increased levels of nigral pro-inflammatory markers and RAS pro-inflammatory activity. The present results show that a dysregulation of the neural bidirectional gut-brain interaction may explain the early gut disturbances observed in parkinsonian patients, and also the increase in vulnerability of nigral dopaminergic neurons after gut inflammation.


Assuntos
Dopamina/metabolismo , Trato Gastrointestinal/inervação , Trato Gastrointestinal/patologia , Doença de Parkinson/patologia , Animais , Colo/inervação , Colo/patologia , Modelos Animais de Doenças , Inflamação/patologia , Masculino , Camundongos Endogâmicos C57BL , Oxidopamina , Ratos Sprague-Dawley , Substância Negra/patologia , Tirosina 3-Mono-Oxigenase/metabolismo , Vagotomia
19.
Front Aging Neurosci ; 9: 129, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28515690

RESUMO

Microglia can transform into proinflammatory/classically activated (M1) or anti-inflammatory/alternatively activated (M2) phenotypes following environmental signals related to physiological conditions or brain lesions. An adequate transition from the M1 (proinflammatory) to M2 (immunoregulatory) phenotype is necessary to counteract brain damage. Several factors involved in microglial polarization have already been identified. However, the effects of the brain renin-angiotensin system (RAS) on microglial polarization are less known. It is well known that there is a "classical" circulating RAS; however, a second RAS (local or tissue RAS) has been observed in many tissues, including brain. The locally formed angiotensin is involved in local pathological changes of these tissues and modulates immune cells, which are equipped with all the components of the RAS. There are also recent data showing that brain RAS plays a major role in microglial polarization. Level of microglial NADPH-oxidase (Nox) activation is a major regulator of the shift between M1/proinflammatory and M2/immunoregulatory microglial phenotypes so that Nox activation promotes the proinflammatory and inhibits the immunoregulatory phenotype. Angiotensin II (Ang II), via its type 1 receptor (AT1), is a major activator of the NADPH-oxidase complex, leading to pro-oxidative and pro-inflammatory effects. However, these effects are counteracted by a RAS opposite arm constituted by Angiotensin II/AT2 receptor signaling and Angiotensin 1-7/Mas receptor (MasR) signaling. In addition, activation of prorenin-renin receptors may contribute to activation of the proinflammatory phenotype. Aged brains showed upregulation of AT1 and downregulation of AT2 receptor expression, which may contribute to a pro-oxidative pro-inflammatory state and the increase in neuron vulnerability. Several recent studies have shown interactions between the brain RAS and different factors involved in microglial polarization, such as estrogens, Rho kinase (ROCK), insulin-like growth factor-1 (IGF-1), tumor necrosis factor α (TNF)-α, iron, peroxisome proliferator-activated receptor gamma, and toll-like receptors (TLRs). Metabolic reprogramming has recently been involved in the regulation of the neuroinflammatory response. Interestingly, we have recently observed a mitochondrial RAS, which is altered in aged brains. In conclusion, dysregulation of brain RAS plays a major role in aging-related changes and neurodegeneration by exacerbation of oxidative stress (OS) and neuroinflammation, which may be attenuated by pharmacological manipulation of RAS components.

20.
Front Cell Neurosci ; 11: 130, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28522963

RESUMO

Upon cell stimulation, the network of cortical actin filaments is rearranged to facilitate the neurosecretory process. This actin rearrangement includes both disruption of the preexisting actin network and de novo actin polymerization. However, the mechanism by which a Ca2+ signal elicits the formation of new actin filaments remains uncertain. Cortactin, an actin-binding protein that promotes actin polymerization in synergy with the nucleation promoting factor N-WASP, could play a key role in this mechanism. We addressed this hypothesis by analyzing de novo actin polymerization and exocytosis in bovine adrenal chromaffin cells expressing different cortactin or N-WASP domains, or cortactin mutants that fail to interact with proline-rich domain (PRD)-containing proteins, including N-WASP, or to be phosphorylated by Ca2+-dependent kinases, such as ERK1/2 and Src. Our results show that the activation of nicotinic receptors in chromaffin cells promotes cortactin translocation to the cell cortex, where it colocalizes with actin filaments. We further found that, in association with PRD-containing proteins, cortactin contributes to the Ca2+-dependent formation of F-actin, and regulates fusion pore dynamics and the number of exocytotic events induced by activation of nicotinic receptors. However, whereas the actions of cortactin on the fusion pore dynamics seems to depend on the availability of monomeric actin and its phosphorylation by ERK1/2 and Src kinases, cortactin regulates the extent of exocytosis by a mechanism independent of actin polymerization. Together our findings point out a role for cortactin as a critical modulator of actin filament formation and exocytosis in neuroendocrine cells.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA