Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Phys Rev Lett ; 122(8): 082003, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30932583

RESUMO

The adapted DIRAC experiment at the CERN PS accelerator observed for the first time long-lived hydrogenlike π^{+}π^{-} atoms, produced by protons hitting a beryllium target. A part of these atoms crossed the gap of 96 mm between the target and a 2.1 µm thick platinum foil, in which most of them dissociated. Analyzing the observed number of atomic pairs, n_{A}^{L}=436_{-61}^{+157}|_{tot}, the lifetime of the 2p state is found to be τ_{2p}=(0.45_{-0.30}^{+1.08}|_{tot})×10^{-11} s, not contradicting the corresponding QED 2p state lifetime τ_{2p}^{QED}=1.17×10^{-11} s. This lifetime value is three orders of magnitude larger than our previously measured value of the π^{+}π^{-} atom ground state lifetime τ=(3.15_{-0.26}^{+0.28}|_{tot})×10^{-15} s. Further studies of long-lived π^{+}π^{-} atoms will allow us to measure energy differences between p and s atomic states and so to discriminate between the isoscalar and isotensor ππ scattering lengths with the aim to check QCD predictions.

2.
Phys Rev Lett ; 117(11): 112001, 2016 Sep 09.
Artigo em Inglês | MEDLINE | ID: mdl-27661682

RESUMO

The observation of hydrogenlike πK atoms, consisting of π^{-}K^{+} or π^{+}K^{-} mesons, is presented. The atoms are produced by 24 GeV/c protons from the CERN PS accelerator, interacting with platinum or nickel foil targets. The breakup (ionization) of πK atoms in the same targets yields characteristic πK pairs, called "atomic pairs," with small relative momenta Q in the pair center-of-mass system. The upgraded DIRAC experiment observed 349±62 such atomic πK pairs, corresponding to a signal of 5.6 standard deviations. This is the first statistically significant observation of the strange dimesonic πK atom.

3.
Phys Rev Lett ; 115(5): 054802, 2015 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-26274423

RESUMO

The production of neutron beams having short temporal duration is studied using ultraintense laser pulses. Laser-accelerated protons are spectrally filtered using a laser-triggered microlens to produce a short duration neutron pulse via nuclear reactions induced in a converter material (LiF). This produces a ∼3 ns duration neutron pulse with 10(4) n/MeV/sr/shot at 0.56 m from the laser-irradiated proton source. The large spatial separation between the neutron production and the proton source allows for shielding from the copious and undesirable radiation resulting from the laser-plasma interaction. This neutron pulse compares favorably to the duration of conventional accelerator sources and should scale up with, present and future, higher energy laser facilities to produce brighter and shorter neutron beams for ultrafast probing of dense materials.

4.
Phys Rev Lett ; 108(12): 122701, 2012 Mar 23.
Artigo em Inglês | MEDLINE | ID: mdl-22540578

RESUMO

An atomic clock based on x-ray fluorescence yields has been used to estimate the mean characteristic time for fusion followed by fission in reactions 238U + 64Ni at 6.6 MeV/A. Inner shell vacancies are created during the collisions in the electronic structure of the possibly formed Z=120 compound nuclei. The filling of these vacancies accompanied by a x-ray emission with energies characteristic of Z=120 can take place only if the atomic transitions occur before nuclear fission. Therefore, the x-ray yield characteristic of the united atom with 120 protons is strongly related to the fission time and to the vacancy lifetimes. K x rays from the element with Z=120 have been unambiguously identified from a coupled analysis of the involved nuclear reaction mechanisms and of the measured photon spectra. A minimum mean fission time τ(f)=2.5×10(-18) s has been deduced for Z=120 from the measured x-ray multiplicity.

5.
Rev Sci Instrum ; 92(11): 113303, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34852516

RESUMO

The advent of multi-PW laser facilities world-wide opens new opportunities for nuclear physics. With this perspective, we developed a neutron counter taking into account the specifics of a high-intensity laser environment. Using GEANT4 simulations and prototype testings, we report on the design of a modular neutron counter based on boron-10 enriched scintillators and a high-density polyethylene moderator. This detector has been calibrated using a plutonium-beryllium neutron source and commissioned during an actual neutron-producing laser experiment at the LULI2000 facility (France). An overall efficiency of 4.37(59)% has been demonstrated during calibration with a recovery time of a few hundred microseconds after laser-plasma interaction.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA