Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microorganisms ; 11(9)2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37764047

RESUMO

Bacterial pneumonia is the main cause of illness and death in children under 5 years old. We isolated and cultured pathogenic bacteria LE from the intestines of children with pneumonia and replicated the pediatric pneumonia model using an oral gavage bacterial animal model. Interestingly, based on 16srRNA sequencing, we found that the gut and lung microbiota showed the same imbalance trend, which weakened the natural resistance of this area. Further exploration of its mechanism revealed that the disruption of the intestinal mechanical barrier led to the activation of inflammatory factors IL-6 and IL-17, which promoted the recruitment of ILC-3 and the release of IL-17 and IL-22, leading to lung inflammation. The focus of this study is on the premise that the gut and lung microbiota exhibit similar destructive changes, mediating the innate immune response to promote the occurrence of pneumonia and providing a basis for the development and treatment of new drugs for pediatric pneumonia.

2.
Cells ; 11(3)2022 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-35159170

RESUMO

Mycobacterium tuberculosis (M. tb) is an intracellular pathogen persisting in phagosomes that has the ability to escape host immune surveillance causing tuberculosis (TB). Lipoarabinomannan (LAM), as a glycolipid, is one of the complex outermost components of the mycobacterial cell envelope and plays a critical role in modulating host responses during M. tb infection. Different species within the Mycobacterium genus exhibit distinct LAM structures and elicit diverse innate immune responses. However, little is known about the mechanisms. In this study, we first constructed a LAM-truncated mutant with fewer arabinofuranose (Araf) residues named M. sm-ΔM_6387 (Mycobacterium smegmatis arabinosyltransferase EmbC gene knockout strain). It exhibited some prominent cell wall defects, including tardiness of mycobacterial migration, loss of acid-fast staining, and increased cell wall permeability. Within alveolar epithelial cells (A549) infected by M. sm-ΔM_6387, the uptake rate was lower, phagosomes with bacterial degradation appeared, and microtubule-associated protein light chain 3 (LC3) recruitment was enhanced compared to wild type Mycobacteriumsmegmatis (M. smegmatis). We further confirmed that the variability in the removal capability of M. sm-ΔM_6387 resulted from host cell responses rather than the changes in the mycobacterial cell envelope. Moreover, we found that M. sm-ΔM_6387 or its glycolipid extracts significantly induced expression changes in some genes related to innate immune responses, including Toll-like receptor 2 (TLR2), class A scavenger receptor (SR-A), Rubicon, LC3, tumor necrosis factor alpha (TNF-α), Bcl-2, and Bax. Therefore, our studies suggest that nonpathogenic M. smegmatis can deposit LC3 on phagosomal membranes, and the decrease in the quantity of Araf residues for LAM molecules not only impacts mycobacterial cell wall integrity but also enhances host defense responses against the intracellular pathogens and decreases phagocytosis of host cells.


Assuntos
Mycobacterium tuberculosis , Tuberculose , Células Epiteliais Alveolares/metabolismo , Proteínas de Bactérias/metabolismo , Glicolipídeos/metabolismo , Humanos , Imunidade Inata , Lipopolissacarídeos , Mycobacterium smegmatis/metabolismo , Mycobacterium tuberculosis/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA