Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
País de afiliação
Intervalo de ano de publicação
1.
Microb Cell Fact ; 23(1): 130, 2024 May 06.
Artigo em Inglês | MEDLINE | ID: mdl-38711033

RESUMO

BACKGROUND: Cyclic ß-1,2-glucans (CßG) are bacterial cyclic homopolysaccharides with interesting biotechnological applications. These ring-shaped molecules have a hydrophilic surface that confers high solubility and a hydrophobic cavity able to include poorly soluble molecules. Several studies demonstrate that CßG and many derivatives can be applied in drug solubilization and stabilization, enantiomer separation, catalysis, synthesis of nanomaterials and even as immunomodulators, suggesting these molecules have great potential for their industrial and commercial exploitation. Nowadays, there is no method to produce CßG by chemical synthesis and bacteria that synthesize them are slow-growing or even pathogenic, which makes the scaling up of the process difficult and expensive. Therefore, scalable production and purification methods are needed to afford the demand and expand the repertoire of applications of CßG. RESULTS: We present the production of CßG in specially designed E. coli strains by means of the deletion of intrinsic polysaccharide biosynthetic genes and the heterologous expression of enzymes involved in CßG synthesis, transport and succinilation. These strains produce different types of CßG: unsubstituted CßG, anionic CßG and CßG of high size. Unsubstituted CßG with a degree of polymerization of 17 to 24 glucoses were produced and secreted to the culture medium by one of the strains. Through high cell density culture (HCDC) of that strain we were able to produce 4,5 g of pure unsubstituted CßG /L in culture medium within 48 h culture. CONCLUSIONS: We have developed a new recombinant bacterial system for the synthesis of cyclic ß-1,2-glucans, expanding the use of bacteria as a platform for the production of new polysaccharides with biotechnological applications. This new approach allowed us to produce CßG in E. coli with high yields and the highest volumetric productivity reported to date. We expect this new highly scalable system facilitates CßG availability for further research and the widespread use of these promising molecules across many application fields.


Assuntos
Escherichia coli , beta-Glucanas , Escherichia coli/metabolismo , Escherichia coli/genética , beta-Glucanas/metabolismo
2.
J Bacteriol ; 191(4): 1230-8, 2009 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19074375

RESUMO

Cyclic beta-1,2-glucans (CbetaG) are periplasmic homopolysaccharides that have been shown to play an important role in several symbiotic and pathogenic relationships. Cyclic beta-1,2-glucan synthase (Cgs), the enzyme responsible for the synthesis of CbetaG, is an integral membrane polyfunctional protein that catalyzes the four enzymatic activities (initiation, elongation, phosphorolysis, and cyclization) required for the synthesis of CbetaG. Recently, we have identified the glycosyltransferase and the beta-1,2-glucooligosaccharide phosphorylase domains of Brucella abortus Cgs. In this study, we performed large-scale linker-scanning mutagenesis to gain further insight into the functional domains of Cgs. This analysis allowed us to construct a functional map of the enzyme and led to the identification of the minimal region required for the catalysis of initiation and elongation reactions. In addition, we identified the Cgs region (residues 991 to 1544) as being the protein domain required for cyclization and demonstrated that upon cyclization and releasing of the CbetaG, one or more glucose residues remain attached to the protein intermediate that serves as a primer for the next round of CbetaG synthesis. Finally, our results indicate that the overall control of the degree of polymerization of CbetaG is the result of a balance between elongation, phosphorolysis, and cyclization reactions.


Assuntos
Brucella abortus/enzimologia , Glucosiltransferases/química , Glucosiltransferases/metabolismo , beta-Glucanas/metabolismo , Proteínas de Bactérias , Conformação Proteica , Estrutura Terciária de Proteína
3.
Proc Natl Acad Sci U S A ; 104(42): 16492-7, 2007 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-17921247

RESUMO

Cyclic beta-1,2-glucans (CbetaG) are osmolyte homopolysaccharides with a cyclic beta-1,2-backbone of 17-25 glucose residues present in the periplasmic space of several bacteria. Initiation, elongation, and cyclization, the three distinctive reactions required for building the cyclic structure, are catalyzed by the same protein, the CbetaG synthase. The initiation activity catalyzes the transference of the first glucose from UDP-glucose to a yet-unidentified amino acid residue in the same protein. Elongation proceeds by the successive addition of glucose residues from UDP-glucose to the nonreducing end of the protein-linked beta-1,2-oligosaccharide intermediate. Finally, the protein-linked intermediate is cyclized, and the cyclic glucan is released from the protein. These reactions do not explain, however, the mechanism by which the number of glucose residues in the cyclic structure is controlled. We now report that control of the degree of polymerization (DP) is carried out by a beta-1,2-glucan phosphorylase present at the CbetaG synthase C-terminal domain. This last activity catalyzes the phosphorolysis of the beta-1,2-glucosidic bond at the nonreducing end of the linear protein-linked intermediate, releasing glucose 1-phosphate. The DP is thus regulated by this "length-controlling" phosphorylase activity. To our knowledge, this is the first description of a control of the DP of homopolysaccharides.


Assuntos
Bacillus/enzimologia , Glicosiltransferases/metabolismo , beta-Glucanas/metabolismo , Sequência de Aminoácidos , Glucofosfatos/metabolismo , Glicosiltransferases/genética , Dados de Sequência Molecular , Fosforilases/genética , Fosforilases/metabolismo , Polissacarídeos/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA