Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 120(6): e2212003120, 2023 02 07.
Artigo em Inglês | MEDLINE | ID: mdl-36719915

RESUMO

While establishing an invasive infection, the dormant conidia of Aspergillus fumigatus transit through swollen and germinating stages, to form hyphae. During this morphotype transition, the conidial cell wall undergoes dynamic remodeling, which poses challenges to the host immune system and antifungal drugs. However, such cell wall reorganization during conidial germination has not been studied so far. Here, we explored the molecular rearrangement of Aspergillus fumigatus cell wall polysaccharides during different stages of germination. We took advantage of magic-angle spinning NMR to investigate the cell wall polysaccharides, without employing any destructive method for sample preparation. The breaking of dormancy was associated with a significant change in the molar ratio between the major polysaccharides ß-1,3-glucan and α-1,3-glucan, while chitin remained equally abundant. The use of various polarization transfers allowed the detection of rigid and mobile polysaccharides; the appearance of mobile galactosaminogalactan was a molecular hallmark of germinating conidia. We also report for the first time highly abundant triglyceride lipids in the mobile matrix of conidial cell walls. Water to polysaccharides polarization transfers revealed an increased surface exposure of glucans during germination, while chitin remained embedded deeper in the cell wall, suggesting a molecular compensation mechanism to keep the cell wall rigidity. We complement the NMR analysis with confocal and atomic force microscopies to explore the role of melanin and RodA hydrophobin on the dormant conidial surface. Exemplified here using Aspergillus fumigatus as a model, our approach provides a powerful tool to decipher the molecular remodeling of fungal cell walls during their morphotype switching.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas , Aspergillus fumigatus/metabolismo , Esporos Fúngicos/metabolismo , Proteínas Fúngicas/metabolismo , Polissacarídeos/metabolismo , Quitina/metabolismo , Glucanos/metabolismo , Parede Celular/metabolismo
2.
BMC Biol ; 20(1): 176, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35945584

RESUMO

BACKGROUND: Calmodulin (CaM) is an evolutionarily conserved eukaryotic multifunctional protein that functions as the major sensor of intracellular calcium signaling. Its calcium-modulated function regulates the activity of numerous effector proteins involved in a variety of physiological processes in diverse organs, from proliferation and apoptosis, to memory and immune responses. Due to the pleiotropic roles of CaM in normal and pathological cell functions, CaM antagonists are needed for fundamental studies as well as for potential therapeutic applications. Calmidazolium (CDZ) is a potent small molecule antagonist of CaM and one the most widely used inhibitors of CaM in cell biology. Yet, CDZ, as all other CaM antagonists described thus far, also affects additional cellular targets and its lack of selectivity hinders its application for dissecting calcium/CaM signaling. A better understanding of CaM:CDZ interaction is key to design analogs with improved selectivity. Here, we report a molecular characterization of CaM:CDZ complexes using an integrative structural biology approach combining SEC-SAXS, X-ray crystallography, HDX-MS, and NMR. RESULTS: We provide evidence that binding of a single molecule of CDZ induces an open-to-closed conformational reorientation of the two domains of CaM and results in a strong stabilization of its structural elements associated with a reduction of protein dynamics over a large time range. These CDZ-triggered CaM changes mimic those induced by CaM-binding peptides derived from physiological protein targets, despite their distinct chemical natures. CaM residues in close contact with CDZ and involved in the stabilization of the CaM:CDZ complex have been identified. CONCLUSION: Our results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists. Calmidazolium is a potent and widely used inhibitor of calmodulin, a major mediator of calcium-signaling in eukaryotic cells. Structural characterization of calmidazolium-binding to calmodulin reveals that it triggers open-to-closed conformational changes similar to those induced by calmodulin-binding peptides derived from enzyme targets. These results provide molecular insights into CDZ-induced dynamics and structural changes of CaM leading to its inhibition and open the way to the rational design of more selective CaM antagonists.


Assuntos
Cálcio , Calmodulina , Cálcio/metabolismo , Calmodulina/química , Calmodulina/metabolismo , Imidazóis , Ligação Proteica , Espalhamento a Baixo Ângulo , Difração de Raios X
3.
Infect Immun ; 88(9)2020 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-32571987

RESUMO

Even though both cellular and humoral immunities contribute to host defense, the role played by humoral immunity against the airborne opportunistic fungal pathogen Aspergillus fumigatus has been underexplored. In this study, we aimed at deciphering the role of the complement system, the major humoral immune component, against A. fumigatus Mass spectrometry analysis of the proteins extracted from A. fumigatus conidial (asexual spores and infective propagules) surfaces opsonized with human serum indicated that C3 is the major complement protein involved. Flow cytometry and immunolabeling assays further confirmed C3b (activated C3) deposition on the conidial surfaces. Assays using cell wall components of conidia indicated that the hydrophobin RodAp, ß-(1,3)-glucan (BG) and galactomannan (GM) could efficiently activate C3. Using complement component-depleted sera, we showed that while RodAp activates C3 by the alternative pathway, BG and GM partially follow the classical and lectin pathways, respectively. Opsonization facilitated conidial aggregation and phagocytosis, and complement receptor (CR3 and CR4) blockage on phagocytes significantly inhibited phagocytosis, indicating that the complement system exerts a protective role against conidia by opsonizing them and facilitating their phagocytosis mainly through complement receptors. Conidial opsonization with human bronchoalveolar lavage fluid (BALF) confirmed C3 to be the major complement protein interacting with conidia. Nevertheless, complement C2 and mannose-binding lectin (MBL), the classical and lectin pathway components, respectively, were not identified, indicating that BALF activates the alternative pathway on the conidial surface. Moreover, the cytokine profiles were different upon stimulation of phagocytes with serum- and BALF-opsonized conidia, highlighting the importance of studying interaction of conidia with complement proteins in their biological niche.


Assuntos
Aspergillus fumigatus/imunologia , Líquido da Lavagem Broncoalveolar/imunologia , Complemento C3/imunologia , Polissacarídeos Fúngicos/farmacologia , Macrófagos/efeitos dos fármacos , Soro/imunologia , Esporos Fúngicos/imunologia , Aspergilose/genética , Aspergilose/imunologia , Aspergilose/microbiologia , Aspergillus fumigatus/química , Líquido da Lavagem Broncoalveolar/química , Líquido da Lavagem Broncoalveolar/microbiologia , Parede Celular/química , Parede Celular/imunologia , Ativação do Complemento/efeitos dos fármacos , Complemento C3/genética , Citocinas/biossíntese , Citocinas/imunologia , Polissacarídeos Fúngicos/imunologia , Polissacarídeos Fúngicos/isolamento & purificação , Galactose/análogos & derivados , Interações entre Hospedeiro e Microrganismos/imunologia , Humanos , Imunidade Celular , Imunidade Humoral , Integrina alfaXbeta2/genética , Integrina alfaXbeta2/imunologia , Antígeno de Macrófago 1/genética , Antígeno de Macrófago 1/imunologia , Macrófagos/imunologia , Macrófagos/microbiologia , Mananas/imunologia , Mananas/isolamento & purificação , Mananas/farmacologia , Proteínas Opsonizantes/farmacologia , Fagocitose/efeitos dos fármacos , Cultura Primária de Células , Ligação Proteica , Espécies Reativas de Oxigênio , Soro/química , Soro/microbiologia , Esporos Fúngicos/química , beta-Glucanas/imunologia , beta-Glucanas/isolamento & purificação , beta-Glucanas/farmacologia
4.
Cell Microbiol ; 21(5): e12994, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30552790

RESUMO

If the mycelium of Aspergillus fumigatus is very short-lived in the laboratory, conidia can survive for years. This survival capacity and extreme resistance to environmental insults is a major biological characteristic of this fungal species. Moreover, conidia, which easily reach the host alveola, are the infective propagules. Earlier studies have shown the role of some molecules of the outer conidial layer in protecting the fungus against the host defense. The outer layer of the conidial cell wall, directly in contact with the host cells, consists of α-(1,3)-glucan, melanin, and proteinaceous rodlets. This study is focused on the global importance of this outer layer. Single and multiple mutants without one to three major components of the outer layer were constructed and studied. The results showed that the absence of the target molecules resulting from multiple gene deletions led to unexpected phenotypes without any logical additivity. Unexpected compensatory cell wall surface modifications were indeed observed, such as the synthesis of the mycelial virulence factor galactosaminogalactan, the increase in chitin and glycoprotein concentration or particular changes in permeability. However, sensitivity of the multiple mutants to killing by phagocytic host cells confirmed the major importance of melanin in protecting conidia.


Assuntos
Aspergillus fumigatus/metabolismo , Parede Celular/metabolismo , Melaninas/metabolismo , Esporos Fúngicos/metabolismo , Aspergilose/imunologia , Aspergillus fumigatus/efeitos dos fármacos , Aspergillus fumigatus/genética , Aspergillus fumigatus/patogenicidade , Azóis/farmacologia , Benzenossulfonatos/farmacologia , Caspofungina/farmacologia , Parede Celular/efeitos dos fármacos , Parede Celular/genética , Quitina/metabolismo , Vermelho Congo/farmacologia , Proteínas Fúngicas/metabolismo , Glucanos/genética , Glucanos/metabolismo , Glicoproteínas/genética , Glicoproteínas/metabolismo , Humanos , Interações Hidrofóbicas e Hidrofílicas , Melaninas/genética , Melaninas/fisiologia , Monócitos/imunologia , Micélio/metabolismo , Fagócitos/metabolismo , Polissacarídeos/metabolismo , Piocianina/farmacologia , Esporos Fúngicos/citologia , Esporos Fúngicos/genética , Fatores de Virulência/metabolismo
5.
Cell Rep Methods ; 3(11): 100624, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37909050

RESUMO

Amphitropic proteins and peptides reversibly partition from solution to membrane, a key process that regulates their functions. Experimental approaches classically used to measure protein partitioning into lipid bilayers, such as fluorescence and circular dichroism, are hardly usable when the peptides or proteins do not exhibit significant polarity and/or conformational changes upon membrane binding. Here, we describe binding to lipid vesicles (B2LiVe), a simple, robust, and widely applicable nuclear magnetic resonance (NMR) method to determine the solution-to-membrane partitioning of unlabeled proteins or peptides. B2LiVe relies on previously described proton 1D-NMR fast-pulsing techniques. Membrane partitioning induces a large line broadening, leading to a loss of protein signals; therefore, the decrease of the NMR signal directly measures the fraction of membrane-bound protein. The method uses low polypeptide concentrations and has been validated on several membrane-interacting polypeptides, ranging from 3 to 54 kDa, with membrane vesicles of different sizes and various lipid compositions.


Assuntos
Bicamadas Lipídicas , Peptídeos , Peptídeos/química , Bicamadas Lipídicas/química , Espectroscopia de Ressonância Magnética , Proteínas de Membrana , Imageamento por Ressonância Magnética
6.
J Fungi (Basel) ; 9(2)2023 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-36836270

RESUMO

Earlier studies have shown that the outer layers of the conidial and mycelial cell walls of Aspergillus fumigatus are different. In this work, we analyzed the polysaccharidome of the resting conidial cell wall and observed major differences within the mycelium cell wall. Mainly, the conidia cell wall was characterized by (i) a smaller amount of α-(1,3)-glucan and chitin; (ii) a larger amount of ß-(1,3)-glucan, which was divided into alkali-insoluble and water-soluble fractions, and (iii) the existence of a specific mannan with side chains containing galactopyranose, glucose, and N-acetylglucosamine residues. An analysis of A. fumigatus cell wall gene mutants suggested that members of the fungal GH-72 transglycosylase family play a crucial role in the conidia cell wall ß-(1,3)-glucan organization and that α-(1,6)-mannosyltransferases of GT-32 and GT-62 families are essential to the polymerization of the conidium-associated cell wall mannan. This specific mannan and the well-known galactomannan follow two independent biosynthetic pathways.

7.
J Mol Biol ; 435(3): 167929, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36566799

RESUMO

We have previously shown that the CBb subunit of crotoxin, a ß-neurotoxin with phospholipase A2 (PLA2) activity, targets the human ΔF508CFTR chloride channel implicated in cystic fibrosis (CF). By direct binding to the nucleotide binding domain 1 (NBD1) of ΔF508CFTR, this neurotoxic PLA2 acts as a potentiator increasing chloride channel current and corrects the trafficking defect of misfolded ΔF508CFTR inside the cell. Here, for a therapeutics development of new anti-cystic fibrosis agents, we use a structure-based in silico approach to design peptides mimicking the CBb-ΔF508NBD1 interface. Combining biophysical and electrophysiological methods, we identify several peptides that interact with the ΔF508NBD1 domain and reveal their effects as potentiators on phosphorylated ΔF508CFTR. Moreover, protein-peptide interactions and electrophysiological studies allowed us to identify key residues of ΔF508NBD1 governing the interactions with the novel potentiators. The designed peptides bind to the same region as CBb phospholipase A2 on ΔF508NBD1 and potentiate chloride channel activity. Certain peptides also show an additive effect towards the clinically approved VX-770 potentiator. The identified CF therapeutics peptides represent a novel class of CFTR potentiators and illustrate a strategy leading to reproducing the effect of specific protein-protein interactions.


Assuntos
Crotoxina , Regulador de Condutância Transmembrana em Fibrose Cística , Peptídeos , Humanos , Crotoxina/química , Crotoxina/farmacologia , Fibrose Cística , Regulador de Condutância Transmembrana em Fibrose Cística/metabolismo , Mutação , Peptídeos/química , Fosfolipases/metabolismo , Fosfolipases A2/metabolismo
8.
ACS Chem Biol ; 17(6): 1415-1426, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35649238

RESUMO

Epigenetics has received much attention in the past decade. Many insights on epigenetic (dys)regulation in diseases have been obtained, and clinical therapies targeting them are in place. However, the readers of the epigenetic marks are lacking enlightenment behind this revolution, and it is poorly understood how DNA methylation is being read and translated to chromatin function and cellular responses. Chemical probes targeting the methyl-CpG readers, such as the methyl-CpG binding domain proteins (MBDs), could be used to study this mechanism. We have designed analogues of 5-methylcytosine to probe the MBD domain of human MBD2. By setting up a protein thermal shift assay and an AlphaScreen-based test, we were able to identify three fragments that bind MBD2 alone and disrupt the MBD2-methylated DNA interactions. Two-dimensional NMR experiments and virtual docking gave valuable insights into the interaction of the ligands with the protein showing that the compounds interact with residues that are important for DNA recognition. These constitute the starting point for the design of potent chemical probes for MBD proteins.


Assuntos
Metilação de DNA , Proteínas de Ligação a DNA , 5-Metilcitosina/metabolismo , Ilhas de CpG , DNA/química , Proteínas de Ligação a DNA/metabolismo , Humanos
9.
Front Immunol ; 12: 749074, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34867977

RESUMO

In this study, the human immune response mechanisms against Sporothrix brasiliensis and Sporothrix schenckii, two causative agents of human and animal sporotrichosis, were investigated. The interaction of S. brasiliensis and S. schenckii with human monocyte-derived macrophages (hMDMs) was shown to be dependent on the thermolabile serum complement protein C3, which facilitated the phagocytosis of Sporothrix yeast cells through opsonization. The peptidorhamnomannan (PRM) component of the cell walls of these two Sporothrix yeasts was found to be one of their surfaces exposed pathogen-associated molecular pattern (PAMP), leading to activation of the complement system and deposition of C3b on the Sporothrix yeast surfaces. PRM also showed direct interaction with CD11b, the specific component of the complement receptor-3 (CR3). Furthermore, the blockade of CR3 specifically impacted the interleukin (IL)-1ß secretion by hMDM in response to both S. brasiliensis and S. schenckii, suggesting that the host complement system plays an essential role in the inflammatory immune response against these Sporothrix species. Nevertheless, the structural differences in the PRMs of the two Sporothrix species, as revealed by NMR, were related to the differences observed in the host complement activation pathways. Together, this work reports a new PAMP of the cell surface of pathogenic fungi playing a role through the activation of complement system and via CR3 receptor mediating an inflammatory response to Sporothrix species.


Assuntos
Antígenos de Fungos/imunologia , Proteínas do Sistema Complemento/imunologia , Glicoproteínas/imunologia , Macrófagos/imunologia , Sporothrix , Parede Celular/imunologia , Ativação do Complemento , Citocinas/imunologia , Humanos , L-Lactato Desidrogenase/imunologia , Antígeno de Macrófago 1/imunologia , Macrófagos/microbiologia , Moléculas com Motivos Associados a Patógenos/imunologia , Fagocitose
10.
Biochemistry ; 49(2): 318-28, 2010 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-20000337

RESUMO

Bordetella pertussis, the causative agent of whooping cough, secretes among various toxins an adenylate cyclase (CyaA) that displays a unique mechanism of cell invasion, which involves a direct translocation of its N-terminal catalytic domain (AC, 400 residues) across the plasma membrane of the eukaryotic targeted cells. Once into the cytosol, AC is activated by endogenous calmodulin and produces toxic amounts of cAMP. The structure of AC in complex with the C-terminal part of calmodulin has recently been determined. However, as the structure of the catalytic domain in the absence of calmodulin is still lacking, the molecular basis of AC activation by calmodulin remains largely unknown. To characterize this activation mechanism, we investigated here the biophysical properties of the isolated catalytic domain in solution with or without calmodulin. We found that calmodulin triggered only minor modifications of the protein secondary and tertiary structure but had a pronounced effect on the hydrodynamic properties of AC. Indeed, while the isolated catalytic domain was spherical and hydrated, it underwent a significant elongation as well as compaction and dehydration upon calmodulin interaction. On the basis of these data, we propose a model for the structural transition between the calmodulin-free and calmodulin-bound AC.


Assuntos
Toxina Adenilato Ciclase/química , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis/enzimologia , Calmodulina/farmacologia , Toxina Adenilato Ciclase/genética , Toxina Adenilato Ciclase/isolamento & purificação , Bordetella pertussis/genética , Domínio Catalítico , Cromatografia em Gel , Cromatografia por Troca Iônica , Dicroísmo Circular , Espectroscopia de Ressonância Magnética , Espectrometria de Massas , Conformação Proteica , Espectrofotometria
11.
J Fungi (Basel) ; 6(3)2020 Aug 26.
Artigo em Inglês | MEDLINE | ID: mdl-32859091

RESUMO

Immune inertness of Aspergillus fumigatus conidia is attributed to its surface rodlet-layer made up of RodAp, characterized by eight conserved cysteine residues forming four disulfide bonds. Earlier, we showed that the conserved cysteine residue point (ccrp) mutations result in conidia devoid of the rodlet layer. Here, we extended our study comparing the surface organization and immunoreactivity of conidia carrying ccrp-mutations with the RODA deletion mutant (∆rodA). Western blot analysis using anti-RodAp antibodies indicated the absence of RodAp in the cytoplasm of ccrp-mutant conidia. Immunolabeling revealed differential reactivity to conidial surface glucans, the ccrp-mutant conidia preferentially binding to α-(1,3)-glucan, ∆rodA conidia selectively bound to ß-(1,3)-glucan; the parental strain conidia showed negative labeling. However, permeability of ccrp-mutants and ∆rodA was similar to the parental strain conidia. Proteomic analyses of the conidial surface exposed proteins of the ccrp-mutants showed more similarities with the parental strain, but were significantly different from the ∆rodA. Ccrp-mutant conidia were less immunostimulatory compared to ∆rodA conidia. Our data suggest that (i) the conserved cysteine residues are essential for the trafficking of RodAp and the organization of the rodlet layer on the conidial surface, and (ii) targeted point mutation could be an alternative approach to study the role of fungal cell-wall genes in host-fungal interaction.

13.
Cell Surf ; 5: 100023, 2019 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32743139

RESUMO

The rodlet structure present on the Aspergillus fumigatus conidial surface hides conidia from immune recognition. In spite of the essential biological role of the rodlets, the molecular basis for their self-assembly and disaggregation is not known. Analysis of the soluble forms of conidia-extracted and recombinant RodA by NMR spectroscopy has indicated the importance of disulfide bonds and identified two dynamic regions as likely candidates for conformational change and intermolecular interactions during conversion of RodA into the amyloid rodlet structure. Point mutations introduced into the RODA sequence confirmed that (1) mutation of a single cysteine was sufficient to block rodlet formation on the conidial surface and (2) both presumed amyloidogenic regions were needed for proper rodlet assembly. Mutations in the two putative amyloidogenic regions retarded and disturbed, but did not completely inhibit, the formation of the rodlets in vitro and on the conidial surface. Even in a disturbed form, the presence of rodlets on the surface of the conidia was sufficient to immunosilence the conidium. However, in contrast to the parental conidia, long exposure of mutant conidia lacking disulfide bridges within RodA or expressing RodA carrying the double (I115S/I146G) mutation activated dendritic cells with the subsequent secretion of proinflammatory cytokines. The immune reactivity of the RodA mutant conidia was not due to a modification in the RodA structure, but to the exposure of different pathogen-associated molecular patterns on the surface as a result of the modification of the rodlet surface layer. The full degradation of the rodlet layer, which occurs during early germination, is due to a complex array of cell wall bound proteases. As reported earlier, this loss of the rodlet layer lead to a strong anti-fumigatus host immune response in mouse lungs.

14.
Nucleic Acids Res ; 34(17): 4837-45, 2006.
Artigo em Inglês | MEDLINE | ID: mdl-16973899

RESUMO

While studying gene expression of the rudivirus SIRV1 in cells of its host, the hyperthermophilic crenarchaeon Sulfolobus, a novel archaeal transcriptional regulator was isolated. The 14 kDa protein, termed Sulfolobus transcription activator 1, Sta1, is encoded on the host chromosome. Its activating effect on transcription initiation from viral promoters was demonstrated in in vitro transcription experiments using a reconstituted host system containing the RNA polymerase, TATA-binding protein (TBP) and transcription factor B (TFB). Most pronounced activation was observed at low concentrations of either of the two transcription factors, TBP or TFB. Sta1 was able to bind viral promoters independently of any component of the host pre-initiation complex. Two binding sites were revealed by footprinting, one located in the core promoter region and the second approximately 30 bp upstream of it. Comparative modeling, NMR and circular dichroism of Sta1 indicated that the protein contained a winged helix-turn-helix motif, most probably involved in DNA binding. This strategy of the archaeal virus to co-opt a host cell regulator to promote transcription of its genes resembles eukaryal virus-host relationships.


Assuntos
Proteínas Arqueais/metabolismo , Regulação Viral da Expressão Gênica , Rudiviridae/genética , Sulfolobus/virologia , Transativadores/metabolismo , Ativação Transcricional , Sequência de Aminoácidos , Proteínas Arqueais/química , Proteínas Arqueais/genética , Sítios de Ligação , Proteínas de Ligação a DNA/isolamento & purificação , Dados de Sequência Molecular , Regiões Promotoras Genéticas , Alinhamento de Sequência , Sulfolobus/genética , Transativadores/química , Transativadores/genética
15.
J Mol Biol ; 430(20): 3784-3801, 2018 10 12.
Artigo em Inglês | MEDLINE | ID: mdl-30096347

RESUMO

Hydrophobins are amphiphilic proteins secreted by filamentous fungi in a soluble form, which can self-assemble at hydrophilic/hydrophobic or water/air interfaces to form amphiphilic layers that have multiple biological roles. We have investigated the conformational changes that occur upon self-assembly of six hydrophobins that form functional amyloid fibrils with a rodlet morphology. These hydrophobins are present in the cell wall of spores from different fungal species. From available structures and NMR chemical shifts, we established the secondary structures of the monomeric forms of these proteins and monitored their conformational changes upon amyloid rodlet formation or thermal transitions using synchrotron radiation circular dichroism and Fourier-transform infrared spectroscopy (FT-IR). Thermal transitions were followed by synchrotron radiation circular dichroism in quartz cells that allowed for microbubbles and hence water/air interfaces to form and showed irreversible conformations that differed from the rodlet state for most of the proteins. In contrast, thermal transitions on hermetic calcium fluoride cells showed reversible conformational changes. Heating hydrophobin solutions with a water/air interface on a silicon crystal surface in FT-IR experiments resulted in a gain in ß-sheet content typical of amyloid fibrils for all except one protein. Rodlet formation was further confirmed by electron microscopy. FT-IR spectra of pre-formed hydrophobin rodlet preparations also showed a gain in ß-sheet characteristic of the amyloid cross-ß structure. Our results indicate that hydrophobins are capable of significant conformational plasticity and the nature of the assemblies formed by these surface-active proteins is highly dependent on the interface at which self-assembly takes place.


Assuntos
Amiloide/química , Amiloide/metabolismo , Proteínas Fúngicas/química , Proteínas Fúngicas/metabolismo , Modelos Moleculares , Conformação Proteica , Amiloide/ultraestrutura , Temperatura Alta , Concentração de Íons de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Estrutura Secundária de Proteína , Análise Espectral , Relação Estrutura-Atividade
16.
Toxicon ; 149: 37-44, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29337218

RESUMO

The adenylate cyclase toxin (CyaA) plays an essential role in the early stages of respiratory tract colonization by Bordetella pertussis, the causative agent of whooping cough. Once secreted, CyaA invades eukaryotic cells, leading to cell death. The cell intoxication process involves a unique mechanism of translocation of the CyaA catalytic domain directly across the plasma membrane of the target cell. Herein, we review our recent results describing how calcium is involved in several steps of this intoxication process. In conditions mimicking the low calcium environment of the crowded bacterial cytosol, we show that the C-terminal, calcium-binding Repeat-in-ToXin (RTX) domain of CyaA, RD, is an extended, intrinsically disordered polypeptide chain with a significant level of local, secondary structure elements, appropriately sized for transport through the narrow channel of the secretion system. Upon secretion, the high calcium concentration in the extracellular milieu induces the refolding of RD, which likely acts as a scaffold to favor the refolding of the upstream domains of the full-length protein. Due to the presence of hydrophobic regions, CyaA is prone to aggregate into multimeric forms in vitro, in the absence of a chaotropic agent. We have recently defined the experimental conditions required for CyaA folding, comprising both calcium binding and molecular confinement. These parameters are critical for CyaA folding into a stable, monomeric and functional form. The monomeric, calcium-loaded (holo) toxin exhibits efficient liposome permeabilization and hemolytic activities in vitro, even in a fully calcium-free environment. By contrast, the toxin requires sub-millimolar calcium concentrations in solution to translocate its catalytic domain across the plasma membrane, indicating that free calcium in solution is actively involved in the CyaA toxin translocation process. Overall, this data demonstrates the remarkable adaptation of bacterial RTX toxins to the diversity of calcium concentrations it is exposed to in the successive environments encountered in the course of the intoxication process.


Assuntos
Toxina Adenilato Ciclase/química , Cálcio/química , Modelos Biológicos , Coqueluche/microbiologia , Toxina Adenilato Ciclase/metabolismo , Bordetella pertussis , Células Eucarióticas/microbiologia , Domínios Proteicos , Dobramento de Proteína , Sistemas de Translocação de Proteínas , Transporte Proteico
17.
J Fungi (Basel) ; 4(1)2017 Dec 24.
Artigo em Inglês | MEDLINE | ID: mdl-29371496

RESUMO

Resistance of Aspergillus fumigatus conidia to desiccation and their capacity to reach the alveoli are partly due to the presence of a hydrophobic layer composed of a protein from the hydrophobin family, called RodA, which covers the conidial surface. In A. fumigatus there are seven hydrophobins (RodA-RodG) belonging to class I and III. Most of them have never been studied. We constructed single and multiple hydrophobin-deletion mutants until the generation of a hydrophobin-free mutant. The phenotype, immunogenicity, and virulence of the mutants were studied. RODA is the most expressed hydrophobin in sporulating cultures, whereas RODB is upregulated in biofilm conditions and in vivo Only RodA, however, is responsible for rodlet formation, sporulation, conidial hydrophobicity, resistance to physical insult or anionic dyes, and immunological inertia of the conidia. None of the hydrophobin plays a role in biofilm formation or its hydrophobicity. RodA is the only needed hydrophobin in A. fumigatus, conditioning the structure, permeability, hydrophobicity, and immune-inertia of the cell wall surface in conidia. Moreover, the defect of rodlets on the conidial cell wall surface impacts on the drug sensitivity of the fungus.

18.
FEBS J ; 273(1): 34-46, 2006 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-16367746

RESUMO

Dengue is a re-emerging viral disease, affecting approx. 100 million individuals annually. The monoclonal antibody mAb4E11 neutralizes the four serotypes of the dengue virus, but not other flaviviruses. Its epitope is included within the highly immunogenic domain 3 of the envelope glycoprotein E. To understand the favorable properties of recognition between mAb4E11 and the virus, we recreated the genetic events that led to mAb4E11 during an immune response and performed an alanine scanning mutagenesis of its third hypervariable loops (H-CDR3 and L-CDR3). The affinities between 16 mutant Fab fragments and the viral antigen (serotype 1) were measured by a competition ELISA in solution and their kinetics of interaction by surface plasmon resonance. The diversity and junction residues of mAb4E11 (D segment; V(H)-D, D-J(H) and V(L)-J(L) junctions) constituted major hotspots of interaction energy. Two residues from the D segment (H-Trp96 and H-Glu97) provided > 85% of the free energy of interaction and were highly accessible to the solvent in a three-dimensional model of mAb4E11. Changes of residues (L-Arg90 and L-Pro95) that statistically do not participate in the contacts between antibodies and antigens but determine the structure of L-CDR3, decreased the affinity between mAb4E11 and its antigen. Changes of L-Pro95 and other neutral residues strongly decreased the rate of association, possibly by perturbing the topology of the electrostatic field of the antibody. These data will help to improve the properties of mAb4E11 for therapeutic applications and map its epitope precisely.


Assuntos
Anticorpos Monoclonais/química , Anticorpos Antivirais/química , Vírus da Dengue/imunologia , Sequência de Aminoácidos , Anticorpos Monoclonais/metabolismo , Afinidade de Anticorpos , Sequência de Bases , Sítios de Ligação de Anticorpos , Vírus da Dengue/química , Fragmentos Fab das Imunoglobulinas/química , Fragmentos Fab das Imunoglobulinas/metabolismo , Modelos Moleculares , Dados de Sequência Molecular , Mutagênese , Ressonância Magnética Nuclear Biomolecular , Conformação Proteica , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Ressonância de Plasmônio de Superfície
19.
Structure ; 10(3): 311-7, 2002 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-12005430

RESUMO

The structure of a recombinant protein, TyrRS(delta4), corresponding to the anticodon arm binding domain of Bacillus stearothermophilus tyrosyl-tRNA synthetase, has been solved, and its dynamics have been studied by nuclear magnetic resonance (NMR). It is the first structure described for such a domain of a tyrosyl-tRNA synthetase. It consists of a five-stranded beta sheet, packed against two alpha helices on one side and one alpha helix on the other side. A large part of the domain is structurally similar to other functionally unrelated RNA binding proteins. The basic residues known to be essential for tRNA binding and charging are exposed to the solvent on the same face of the molecule. The structure of TyrRS(delta4), together with previous mutagenesis data, allows one to delineate the region of interaction with tRNATyr.


Assuntos
Anticódon , Geobacillus stearothermophilus/enzimologia , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Tirosina-tRNA Ligase/química , Sequência de Aminoácidos , Cristalografia por Raios X , Geobacillus stearothermophilus/química , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Dados de Sequência Molecular , RNA de Transferência/metabolismo , Proteínas de Ligação a RNA/química , Proteínas de Ligação a RNA/genética , Proteínas de Ligação a RNA/metabolismo , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/metabolismo , Alinhamento de Sequência , Tirosina-tRNA Ligase/genética , Tirosina-tRNA Ligase/metabolismo
20.
Biomol NMR Assign ; 9(1): 113-8, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24659460

RESUMO

Hydrophobins are fungal proteins characterised by their amphipathic properties and an idiosyncratic pattern of eight cysteine residues involved in four disulphide bridges. The soluble form of these proteins spontaneously self-assembles at hydrophobic/hydrophilic interfaces to form an amphipathic monolayer. The RodA hydrophobin of the opportunistic pathogen Aspergillus fumigatus forms an amyloid layer with a rodlet morphology that covers the surface of fungal spores. This rodlet layer bestows hydrophobicity to the spores facilitating their dispersal in the air and rendering the conidia inert relative to the human immune system. As a first step in the analysis of the solution structure and self-association of RodA, we report the (1)H, (13)C and (15)N resonance assignments of the soluble monomeric form of RodA.


Assuntos
Aspergillus fumigatus , Proteínas Fúngicas/química , Ressonância Magnética Nuclear Biomolecular , Infecções Oportunistas/microbiologia , Sequência de Aminoácidos , Dados de Sequência Molecular , Estrutura Secundária de Proteína
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA