Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 34
Filtrar
1.
J Phys Chem A ; 127(34): 7045-7057, 2023 Aug 31.
Artigo em Inglês | MEDLINE | ID: mdl-37606197

RESUMO

The PUREX solvent extraction process, widely used for recovering uranium and plutonium from spent nuclear fuel, utilizes an organic solvent composed of tributyl phosphate (TBP). The emission of ionizing particles such as alpha particles, resulting from the decay of plutonium, makes the organic solvent vulnerable to degradation. Here, we study the ultrashort time alpha irradiation of tributylphosphate (TBP) and Pu(NO3)4(TBP)2 complex formed in the PUREX process. Electron dynamics is propagated by Real-Time-Dependent Auxiliary Density Functional Theory (RT-TD-ADFT). We investigate the use of previously proposed absorption boundary conditions (ABC) in the molecular orbital space to treat secondary electron emission. Basis set and exchange correlation functional effects with ABC are reported as well as a detailed analysis of the ABC parametrization. Preliminary results on the water molecule and then on TBP show that the phenomenological nature of the ABC parameters necessitates selecting appropriate values for each system under study. Irradiation of free and complexed TBP shows an influence of the ligands on the variation of atomic charges on the femtosecond time scale. An accumulation of atomic charges in the alkyl chains of TBP is observed in the case where the nitrate groups are predominantly irradiated. In addition, we find that the Pu atom regains its electric charge very rapidly after being hit by the projectile, with the coordination sphere serving as an electron reservoir to preserve its formal redox state. This study paves the road toward a full understanding of the degradation of organic extracants employed in the nuclear industry.

2.
J Synchrotron Radiat ; 29(Pt 1): 1-10, 2022 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-34985417

RESUMO

A spectroelectrochemical setup has been developed to investigate radioactive elements in small volumes (0.7 to 2 ml) under oxidation-reduction (redox) controlled conditions by X-ray absorption spectroscopy (XAS). The cell design is presented together with in situ XAS measurements performed during neptunium redox reactions. Cycling experiments on the NpO22+/NpO2+ redox couple were applied to qualify the cell electrodynamics using XANES measurements and its ability to probe modifications in the neptunyl hydration shell in a 1 mol l-1 HNO3 solution. The XAS results are in agreement with previous structural studies and the NpO22+/NpO2+ standard potential, determined using Nernst methods, is consistent with measurements based on other techniques. Subsequently, the NpO2+, NpO22+ and Np4+ ion structures in solution were stabilized and measured using EXAFS. The resulting fit parameters are again compared with other results from the literature and with theoretical models in order to evaluate how this spectroelectrochemistry experiment succeeds or fails to stabilize the oxidation states of actinides. The experiment succeeded in: (i) implementing a robust and safe XAS device to investigate unstable radioactive species, (ii) evaluate in a reproducible manner the NpO22+/NpO2+ standard potential under dilute conditions and (iii) clarify mechanistic aspects of the actinyl hydration sphere in solution. In contrast, a detailed comparison of EXAFS fit parameters shows that this method is less appropriate than the majority of the previously reported chemical methods for the stabilization of the Np4+ ion.

3.
Inorg Chem ; 61(31): 12337-12348, 2022 Aug 08.
Artigo em Inglês | MEDLINE | ID: mdl-35881850

RESUMO

Single-crystal X-ray diffraction (SC-XRD) structures and Raman spectra of a series of new isomorphous molecular An(IV)-oxalate compounds (Th, U, Np, and Pu) are reported. These complexes are crystallized with cobalt(III) hexamine ([Co(NH3)6]3+) as the counter cations, [Co(NH3)6]2[An(C2O4)5]·4H2O, revealing five bidentate nonbridging oxalate ligands in the first coordination sphere (CN = 10). The nonbridging oxalate is rather uncommon for An(IV)-oxalate systems, which are widely characterized as polymeric compounds. Density functional theory (DFT) calculations were performed to examine the bonding between An(IV) cations and oxalate ligands. For comparison, we also report results obtained for the An(IV)-hexanitrate series, [(C2H5)4N]2[An(NO3)6] (with An = Th, U, Np, Pu, and Ce), which consists of O-donor ligands as well but with a larger coordination number (CN = 12). The bonding analysis confirms that the actinide-oxygen bond is predominantly ionic with a minor increase in covalency from Th to U and slight variations from U to Pu. Further comparison showed that the charge transfer increases slightly when increasing the number of anions in the coordination sphere (C2O42-: CN = 10; NO3-: CN = 12), but covalent effects as indicated by the amount of internuclear electron density accumulation are small and similar for oxalate and nitrate.

4.
Inorg Chem ; 61(12): 4806-4817, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35289606

RESUMO

A new hexanuclear plutonium cluster has been stabilized in aqueous media with acetate ligands. To probe the formation of such a complex structure, visible-near infrared (vis-NIR) absorption spectroscopy, extended X-ray absorption fine structure (EXAFS) spectroscopy, and density functional theory (DFT) were combined. The presence of Pu6O4(OH)4(CH3COO)12 species in solution was first detected by vis-NIR and EXAFS spectroscopy. To confirm unambiguously this structure, EXAFS spectra were simulated from ab initio calculations. Debye-Waller factors and structural parameters were derived from DFT calculations. A large number of 5f electrons were treated as valence or core electrons using small- and large-core relativistic effective pseudopotentials. It is possible to reproduce accurately the EXAFS spectrum of the octahedral hexamer cluster at both levels of calculations. Further DFT and EXAFS calculations were performed on clusters of lower or higher nuclearities and of different geometries using the 5f-core approximation. The result shows that trimer, tetramer, flat hexamer, and even 16-mer clusters exhibit different EXAFS patterns and confirm the very specific octahedral hexanuclear EXAFS signature.

5.
Inorg Chem ; 61(2): 890-901, 2022 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-34881886

RESUMO

Uranyl binitrate complexes have a particular interest in the nuclear industry, especially in the reprocessing of spent nuclear fuel. The modified PUREX extraction process is designed to extract U(VI) in the form of UO2(NO3)2(L)2 as has been confirmed by extended X-ray absorption fine structure (EXAFS), X-ray diffraction (XRD), and time-resolved laser-induced fluorescence spectroscopy (TRLFS) measurements. In this study, the L ligands are two molecules of N,N-di-(ethyl-2-hexyl)isobutyramide (DEHiBA) monoamide used to bind uranyl in its first coordination sphere. DEHiBA ligands can coordinate uranyl in either trans- or cis-position with respect to the nitrate ligands, and these two conformers may coexist in solution. To use luminescence spectroscopy as a speciation technique, it is important to determine whether or not these conformers can be discriminated by their spectroscopic properties. To answer this question, the spectra of trans- and cis-UO2(NO3)2(DEiBA)2 conformers were modeled with ab initio methods and compared to the experimental time-resolved luminescence spectra on UO2(NO3)2(DEHiBA)2 systems. Moreover, the hydrated uranyl binitrate UO2(NO3)2(H2O)2 complexes in the same trans and cis configurations were modeled to quantify the impact of organic DEHiBA on the luminescence properties.

6.
J Chem Inf Model ; 62(10): 2432-2445, 2022 05 23.
Artigo em Inglês | MEDLINE | ID: mdl-35537184

RESUMO

In this work, a set of 12-6-4 force fields (FFs) parameters were developed for the actinyl molecular cations, AnO2n+ (n = 1, 2), from uranium to plutonium for classical molecular dynamics (MD) for four water models: TIP3P, SPC/E, OPC3, and TIP4Pew. Such a non-bonded potential model taking into account the induced dipole between the metallic center and the surrounding molecules has shown better performances for various cations than the classic 12-6 non-bonded potentials. The parametrization method proposed elsewhere for metallic cations has been extended to these molecular cations. In contrast to the actinyl 12-6 FFs from the literature, the new models reproduce correctly both solvation and thermodynamic properties, thanks to the inclusion of the induced dipole term (C4). The transferability of such force fields was assessed by performing MD simulations of carbonato actinyl species, which are highly implicated in actinide migration or actinide extraction from seawater. A highly satisfying agreement was found when comparing the EXAFS signals computed from our MD simulation to the experimental ones. The set of FFs developed here opens new possibilities for the study of actinide chemistry.


Assuntos
Simulação de Dinâmica Molecular , Água , Cátions , Termodinâmica , Água/química
7.
Phys Chem Chem Phys ; 24(16): 9213-9228, 2022 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-35388813

RESUMO

Radiolytic degradation is an important aspect to consider when developing a ligand or a complexant for radionuclides. Diglycolamide extractants (DGAs) have been playing an important role in many partition processes for spent nuclear fuel. In particular, the extractant N,N,N'N'-tetraoctyl diglycolamide (TODGA) has been studied intensively for the purpose of solvent extraction processes such as ARTIST, i-Sanex, EURO-GANEX and EURO-EXAM, which have been developed around the TODGA extractant. For the first time, the radiolytic stability of TODGA was investigated both by in situ alpha irradiation using a macroconcentration of americum(III) and by ex situ gamma irradiation in the presence of a macroconcentration of neodymium(III). It was shown that metal ions complexed in the organic phase protect TODGA from degradation by irradiation and that the degradation was slower using in situ alpha irradiation compared to ex situ gamma irradiation. By comparison to gamma irradiation of Nd-TODGA solution, alpha irradiation of Am-TODGA solutions showed the presence of 2 additional compounds identified as a TODGA molecule with a CC bond and a TODGA molecule with the addition of a NO3 group. The major degradation products were identified and a degradation schema was proposed. The direct analysis of the solution containing Am(III) or Nd(III) showed that the degradation compounds retaining a diglycolamide skeleton are involved in heteroleptic complexes with TODGA, without a negative impact on An(III) or Ln(III) complexation.

8.
Phys Chem Chem Phys ; 23(3): 2229-2237, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33439157

RESUMO

The strong influence of the structure of amide derivatives on their extraction properties has been demonstrated in several studies in the literature. To investigate and rationalize the influence of the nature and length of the monoamide alkyl chains on Pu(iv) extraction/complexation, a theoretical study was performed using the Density Functional Theory (DFT) method in the scalar relativistic framework. For that, the geometries for the inner/outer-sphere complexes and interaction energies of [Pu(NO3)4] and [Pu(NO3)6]2- with different ligands have been calculated. For both inner and outer-sphere complexes, it is found that the introduction of a bulky alkyl group on the carbonyl side strongly diminishes the complexation energy. This is fully consistent with monamide extraction properties. The influence of the bulkiness of the alkyl group is as or even more important for outer than for inner-sphere interactions. This result was unexpected when considering that there are less flexibility and stronger steric constraints in the inner sphere compared to the outer one. However, this can be attributed to specific electrostatic interactions between the two outer-sphere amide ligands and two nitrate ions of [Pu(NO3)6]2-. By increasing the polarity of the solution, such interactions diminish and the outer-sphere ligands move away from [Pu(NO3)6]2-. Consequently, the solvent effects were found to be very significant for outer-sphere complexation while rather small for inner-sphere complexation. This gives the key possibility to tune the substituent effect by changing the polarity of the solution. As for carbamide ligands, it was found that the weak interactions (dispersion) have remarkable effects on both inner and outer-sphere complexations.

9.
Inorg Chem ; 59(3): 1823-1834, 2020 Feb 03.
Artigo em Inglês | MEDLINE | ID: mdl-31940186

RESUMO

Carbamide and monoamide derivatives are very promising molecules to achieve U(VI) and Pu(IV) extraction and separation from spent nuclear fuels through solvent extraction. Herein, coordination structures of U(VI) and Pu(IV) complexes with carbamide derivatives were characterized using X-ray crystallography as well as infrared, UV-visible, and EXAFS spectroscopies. Coordination structures are compared to those obtained for monoamide derivatives in order to better understand the role of coordination chemistry in extraction properties. Single crystals were first synthesized with a short alkyl chain carbamide analog. Carbamide complexation in the solid state is found analogous to that in the monoamide. In organic solution, upon solvent extraction from nitric acid aqueous solution, it is shown that both amide derivatives can bind in the inner and outer coordination spheres of uranium(VI) and plutonium(IV). The amount of outer sphere coordination complexes increases with the amount of nitric acid. With uranium(VI), at a nitric acid concentration up to 5 mol·L-1, amide derivatives operate predominantly in the inner coordination sphere. In contrast, Pu(IV) coordination geometry is much more sensitive toward acid concentration or ligand structure than U(VI). Pu(IV) changes from inner sphere complexation at 0.5 mol·L-1 HNO3 to mostly outer sphere complexation at 4 mol·L-1. The proportion of outer-sphere complexes is strongly influenced by the ligand structure. Higher Pu(IV) extraction is found to be correlated with the amount of Pu(IV) outer sphere species. Secondary interactions in the outer sphere coordination shell appear to be of primary importance for plutonium extraction.

10.
Chemistry ; 25(17): 4435-4451, 2019 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-30815930

RESUMO

The magnetic properties of LnIII and AnIII complexes formed with dipicolinate ligands have been studied by NMR spectroscopy. To know precisely the geometries of these complexes, a crystallographic study by single-crystal X-ray diffraction (XRD) and extended X-ray absorption fine structure (EXAFS) in solution was performed. Several methods to separate the paramagnetic shifts observed in the NMR spectra were applied to these complexes. Methods using a number of nuclei of the dipicolinate ligands revealed an abrupt change in the geometries of the complexes and a metal-ligand interaction in the middle of the lanthanide series. A study of the variation of the paramagnetic shifts with temperature demonstrated that higher-order terms of the dipolar and contact contributions are required, especially for the lightest LnIII and almost all the studied AnIII . Bleaney's parameters a and C a D relating to the contact and dipolar terms, respectively, were deduced from experimental data and compared with the results of ab initio calculations. Quite a good agreement was found for the temperature dependencies of a and C a D . However, the C a D values obtained from cation magnetic anisotropy calculations showed some discrepancies with the values derived from Bleaney's equation defined for LnIII . Other parameters, such as the crystal field parameter and the hyperfine constants Fi obtained from the experimental data of the [An(ethyl-dpa)3 ]3- complexes (ethyl-dpa=4-ethyl-2,6-dipicolinic acid), are at odds with the assumptions underlying Bleaney's theory.

11.
Inorg Chem ; 58(10): 6904-6917, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31025862

RESUMO

The coordination chemistry of plutonium(IV) and plutonium(VI) with the complexing agents tetraphenyl and tetra-isopropyl imidodiphosphinate (TPIP- and TIPIP-) is reported. Treatment of sodium tetraphenylimidodiphosphinate (NaTPIP) and its related counterpart with peripheral isopropyl groups (NaTIPIP) with [NBu4]2[PuIV(NO3)6] yields the respective PuIV complexes [Pu(TPIP)3(NO3)] and [Pu(TIPIP)2(NO3)2] + [PuIV(TIPIP)3(NO3)]. Similarly, the reactions of NaTPIP and NaTIPIP with a Pu(VI) nitrate solution lead to the formation of [PuO2(HTIPIP)2(H2O)][NO3]2, which incorporates a protonated bidentate TIPIP- ligand, and [PuO2(TPIP)(HTPIP)(NO3)], where the protonated HTPIP ligand is bound in a monodentate fashion. Finally, a mixed U(VI)/Pu(VI) compound, [(UO2/PuO2)(TPIP)(HTPIP)(NO3)], is reported. All these actinyl complexes remain in the +VI oxidation state in solution over several weeks. The resultant complexes have been characterized using a combination of X-ray structural studies, NMR, optical, vibrational spectroscopies, and electrospray ionization mass spectrometry. The influence of the R-group (R = phenyl or iPr) on the nature of the complex is discussed with the help of DFT studies.

13.
Inorg Chem ; 56(20): 12248-12259, 2017 Oct 16.
Artigo em Inglês | MEDLINE | ID: mdl-28968074

RESUMO

The complexation of 1,4,7,10-tetrazacyclodecane-1,4,7,10-tetraacetic acid (DOTA) ligand with two trivalent actinides (Am3+ and Pu3+) was investigated by UV-visible spectrophotometry, NMR spectroscopy, and extended X-ray absorption fine structure in conjunction with computational methods. The complexation process of these two cations is similar to what has been previously observed with lanthanides(III) of similar ionic radius. The complexation takes place in different steps and ends with the formation of a (1:1) complex [(An(III)DOTA)(H2O)]-, where the cation is bonded to the nitrogen atoms of the ring, the four carboxylate arms, and a water molecule to complete the coordination sphere. The formation of An(III)-DOTA complexes is faster than the Ln(III)-DOTA systems of equivalent ionic radius. Furthermore, it is found that An-N distances are slightly shorter than Ln-N distances. Theoretical calculations showed that the slightly higher affinity of DOTA toward Am over Nd is correlated with slightly enhanced ligand-to-metal charge donation arising from oxygen and nitrogen atoms.

14.
Inorg Chem ; 55(23): 12149-12157, 2016 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-27934419

RESUMO

The magnetic properties of actinide(IV) (An(IV)) cations are investigated in various solutions (HClO4, HCl, and HNO3) by the Evans NMR method. The magnetic susceptibilities measured in noncomplexing medium are compared with the previous studies, and the influence of the medium is verified with new measurements in complexing solutions. To rationalize these results, spin-orbit complete active space perturbation theory at second order calculations are performed on the free ions and on the aquo complexes to determine the nature of electronic states, the magnetic susceptibility, and the UV-visible-near-IR spectra. The different factors contributing to the An(IV) magnetic properties were identified. The ligand field effect on the magnetic behavior (Curie constant and temperature-independent susceptibilities) was analyzed by considering different solvation environments. These results indicate a significant effect of the zero-field splitting of the ground J manifold on the An(IV) magnetic susceptibility.

15.
Inorg Chem ; 55(13): 6511-9, 2016 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-27322130

RESUMO

The N,N-dialkylamide DEHiBA (N,N-di-2-ethylhexyl-isobutyramide) is a promising alternative extractant to TBP (tri-n-butylphosphate) to selectively extract uranium(VI) from plutonium(IV) and spent nuclear fuel fission products. Extraction of technetium, present as pertechnetic acid (HTcO4) in the spent fuel solution, by DEHiBA was studied for different nitric acid and uranium concentrations. The uranium(VI) and technetium(VII) coextraction mechanism with DEHiBA was investigated to better understand the behavior of technetium in the solvent extraction process. Uranium and technetium distribution ratios were first determined from batch experiments. On the basis of these data, a thermodynamic model was developed. This model takes into account deviations from ideality in the aqueous phase using the simple solution concept. A good representation of uranium and technetium distribution data was obtained when considering the formation of (DEHiBA)i(HNO3)j(HTcO4)k complexes, as well as mixed (DEHiBA)2(UO2)(NO3)(TcO4) and (DEHiBA)3(UO2)(NO3)(TcO4)(HNO3) complexes, where one pertechnetate anion replaces one nitrate in the uranium coordination sphere in the two complexes (DEHiBA)2(UO2)(NO3)2 and (DEHiBA)3(UO2)(NO3)2(HNO3). Combination of complementary spectroscopic techniques (FT-IR and X-ray absorption) supported by theoretical calculations (density functional theory) enabled full characterization of the formation of mixed uranium-technetium species (DEHiBA)2(UO2)(NO3)(TcO4) in the organic phase for the first time. The structural parameters of this complex are reported in the paper and lead to the conclusion that the pertechnetate group coordinates the uranyl cation in a monodentate fashion in the inner coordination sphere. This study shows how combining a macroscopic approach (distribution data acquisition and modeling) with molecular-scale investigations (FT-IR and X-ray absorption analysis supported by theoretical calculations) can provide a new insight into the description of a solvent extraction mechanism.

16.
Inorg Chem ; 55(11): 5558-69, 2016 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-27171842

RESUMO

The structures of plutonium(IV) and uranium(VI) ions with a series of N,N-dialkyl amides ligands with linear and branched alkyl chains were elucidated from single-crystal X-ray diffraction (XRD), extended X-ray absorption fine structure (EXAFS), and theoretical calculations. In the field of nuclear fuel reprocessing, N,N-dialkyl amides are alternative organic ligands to achieve the separation of uranium(VI) and plutonium(IV) from highly concentrated nitric acid solution. EXAFS analysis combined with XRD shows that the coordination structure of U(VI) is identical in the solution and in the solid state and is independent of the alkyl chain: two amide ligands and four bidentate nitrate ions coordinate the uranyl ion. With linear alkyl chain amides, Pu(IV) also adopt identical structures in the solid state and in solution with two amides and four bidentate nitrate ions. With branched alkyl chain amides, the coordination structure of Pu(IV) was more difficult to establish unambiguously from EXAFS. Density functional theory (DFT) calculations were consequently performed on a series of structures with different coordination modes. Structural parameters and Debye-Waller factors derived from the DFT calculations were used to compute EXAFS spectra without using fitting parameters. By using this methodology, it was possible to show that the branched alkyl chain amides form partly outer-sphere complexes with protonated ligands hydrogen bonded to nitrate ions.

17.
Phys Chem Chem Phys ; 18(4): 2887-95, 2016 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-26733312

RESUMO

The electronic properties of actinide cations are of fundamental interest to describe intramolecular interactions and chemical bonding in the context of nuclear waste reprocessing or direct storage. The 5f and 6d orbitals are the first partially or totally vacant states in these elements, and the nature of the actinide ligand bonds is related to their ability to overlap with ligand orbitals. Because of its chemical and orbital selectivities, X-ray absorption spectroscopy (XAS) is an effective probe of actinide species frontier orbitals and for understanding actinide cation reactivity toward chelating ligands. The soft X-ray probes of the light elements provide better resolution than actinide L3-edges to obtain electronic information from the ligand. Thus coupling simulations to experimental soft X-ray spectral measurements and complementary quantum chemical calculations yields quantitative information on chemical bonding. In this study, soft X-ray XAS at the K-edges of C and N, and the L2,3-edges of Fe was used to investigate the electronic structures of the well-known ferrocyanide complexes K4Fe(II)(CN)6, thorium hexacyanoferrate Th(IV)Fe(II)(CN)6, and neodymium hexacyanoferrate KNd(III)Fe(II)(CN)6. The soft X-ray spectra were simulated based on quantum chemical calculations. Our results highlight the orbital overlapping effects and atomic effective charges in the Fe(II)(CN)6 building block. In addition to providing a detailed description of the electronic structure of the ferrocyanide complex (K4Fe(II)(CN)6), the results strongly contribute to confirming the actinide 5f and 6d orbital oddity in comparison to lanthanide 4f and 5d.

18.
Inorg Chem ; 52(13): 7497-507, 2013 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-23767403

RESUMO

The complex formation of protactinium(V) with DTPA was studied at different temperatures (25-50 °C) and ionic strengths (0.1-1 M) with the element at tracer scale. Irrespective of the temperature and ionic strength studied, only one neutral complex with (1:1) stoichiometry was identified from solvent extraction and capillary electrophoresis coupled to ICP-MS (CE-ICP-MS) experiments. Density Functional Theory (DFT) calculations revealed that two complexes can be considered: Pa(DTPA) and PaO(H2DTPA). The associated formation constants were determined from solvent extraction data at different ionic strengths and temperatures and then extrapolated to zero ionic strength by SIT methodology. These constants are valid, regardless of complex form, Pa(DTPA) or PaO(H2DTPA). The standard thermodynamic data determined with these extrapolated constants revealed a very stable complex formed energetically by an endothermic contribution which is counter balanced by a strong entropic contribution. Both, the positive enthalpy and entropy energy terms suggest the formation of an inner sphere complex.

19.
J Phys Chem A ; 117(21): 4500-5, 2013 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-23600693

RESUMO

The measured redox potential of an actinide at an electrode surface involves the transfer of a single electron from the electrode surface on to the actinide center. Before electron transfer takes place, the complexing ligands and molecules of solvation need to become structurally arranged such that the electron transfer is at its most favorable. Following the electron transfer, there is further rearrangement to obtain the minimum energy structure for the reduced state. As such, there are three parts to the total energy cycle required to take the complex from its ground state oxidized form to its ground state reduced form. The first part of the energy comes from the structural rearrangement and solvation energies of the actinide species before the electron transfer or charge transfer process; the second part, the energy of the electron transfer; the third part, the energy required to reorganize the ligands and molecules of solvation around the reduced species. The time resolution of electrochemical techniques such as cyclic voltammetry is inadequate to determine to what extent bond and solvation rearrangement occurs before or after electron transfer; only for a couple to be classed as reversible is it fast in terms of the experimental time. Consequently, the partitioning of the energy theoretically is of importance to obtain good experimental agreement. Here we investigate the magnitude of the instantaneous charge transfer through calculating the fast one electron reduction energies of AnO2(H2O)n(2+), where An = U, Np, and Pu, for n = 4-6, in solution without inclusion of the structural optimization energy of the reduced form. These calculations have been performed using a number of DFT functionals, including the recently developed functionals of Zhao and Truhlar. The results obtained for calculated electron affinities in the aqueous phase for the AnO2(H2O)5(2+/+) couples are within 0.04 V of accepted experimental redox potentials, nearly an order of magnitude improvement on previous calculated standard potentials E(0) values, obtained using both DFT and high level multireference approaches.


Assuntos
Elementos da Série Actinoide/química , Teoria Quântica , Água/química , Eletrodos , Oxirredução , Propriedades de Superfície
20.
Dalton Trans ; 52(29): 9952-9963, 2023 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-37431783

RESUMO

Radiometals are increasingly used in nuclear medicine for both diagnostic and therapeutic purposes. The DOTA ligand (1,4,7,10-tetraazacyclododecane-1,4,7,10-tetraacetic acid) is widely used as a chelating agent for various radionuclides, including 89Zr, with high thermodynamic stability constants and great in vivo stability. However, in contact with radioisotopes, chelating molecules are subjected to the effects of radiation, which can lead to structural degradation and induce alteration of their complexing properties. For the first time, the radiolytic stability of the Zr-DOTA complex in aqueous solution was studied and compared to the stability of the DOTA ligand. The identification of the major degradation products allows us to propose two different degradation schemes for the DOTA ligand and Zr-DOTA complex. DOTA is degraded preferentially by decarboxylation and cleavage of an acetate arm CH2-COOH, whereas in Zr-DOTA, DOTA tends to oxidize by the addition of the OH group in its structure. In addition, the degradation of the ligand, when involved in a Zr complex, is significantly less than when the ligand is free in solution, indicating that the metal protects the ligand from degradation. DFT calculations were performed to supplement the experimental data and give an improved understanding of the behaviour of DOTA and Zr-DOTA solutions after irradiation: the increase in stability upon complexation is attributed to the strengthening of the bonds in the presence of metal cations, which become less vulnerable to radical attack. Bond dissociation energies and Fukui indices are shown to be useful descriptors to estimate the most vulnerable sites of the ligand and to predict the protective effect of the complexation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA