Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 55
Filtrar
1.
Small ; 19(37): e2301299, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37154245

RESUMO

This paper describes a simple, two-steps chemical pathway to obtain bimetallic carbide nanoparticles (NPs) of general formula MxM″yC, also called η-carbides. This process allows for a control of the chemical composition of metals present in the carbides (M = Co and M″ = Mo or W). The first step involves the synthesis of a precursor consisting of a network of octacyanometalates. The second step consists in a thermal degradation of the previously obtained octacyanometalates networks under neutral atmosphere (Ar or N2 ). It is shown that this process results in the formation of carbide NPs with diameter of ≈ 5nm, and the stoichiometries Co3 M'3 C, Co6 M'6 C, Co2 M'4 C for the CsCoM' systems.

2.
Angew Chem Int Ed Engl ; 61(14): e202117261, 2022 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-35104379

RESUMO

The discovery of a universal memory that exhibits fast access speed, high-density storage, and non-volatility has fuelled research into phase-change materials over the past decades. In spite of the efficiency of the inorganic chalcogenides for phase-change random access memory (PCRAM), they still have some inherent drawbacks, such as high temperature required for phase change and difficulty to control the domain size of the phase change, because of their brittleness. Here we present a AuI -thiolate coordination polymer which undergoes two successive phase changes on application of mild heating (<200 °C) from amorphous-to-crystalline1-to-crystalline2 phases. These transitions are reversible upon soft hand grinding. More importantly, each phase exhibits different photoluminescent properties for an efficient optical read-out. We believe that the ability of the AuI -thiolate coordination polymer to have reversible phase changes under soft conditions and at the same time to display distinct optical signals, can pave the way for the next generation of PCRAM.

3.
Angew Chem Int Ed Engl ; 60(16): 8803-8807, 2021 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-33496370

RESUMO

The [FeII (C6 F5 Tp)2 ] spin-crossover complex is an atypical molecular switch, which can be converted upon annealing between two archetypal spin-crossover behaviours: from an extremely gradual spin-crossover to a broad hysteretic spin-transition (of ca. 65 K). The hysteresis shows an uncommon "rounded shape" that is reproducible upon cycling temperature. In depth structural studies reveal a first crystal phase transition, which occurs upon melting and recrystallizing at high temperature. This first irreversible transition is associated with a radical change in the crystal packing. More importantly, the "rounded and broad" hysteretic transition is shown to occur in a non-cooperative SCO system and is associated with the occurrence of a symmetry-breaking phase transition that appears when roughly ca. 50 % of the SCO complexes are switched.

4.
Inorg Chem ; 58(10): 6918-6926, 2019 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-31070359

RESUMO

We report here the preparation of a series of Zr(IV) metal-organic frameworks (MOFs) of the MIL-140 structure type incorporating a ligand exhibiting an intense excited-state intramolecular proton transfer (ESIPT) fluorescence. These solids were obtained by systematically varying the substitution rate of 4,4'-biphenyldicarboxylate by 2,2'-bipyridine-3,3'-diol-5,5'-dicarboxylate, and they were thoroughly characterized by complementary techniques, including high-resolution powder X-ray diffraction, solid-state NMR spectroscopy, nitrogen sorption experiments, and time-resolved fluorescence. We show that the incorporation of the ESIPT-type ligand induces an increase of the hydrophilicity, leading ultimately to a higher sensitivity toward hydrolysis, a phenomenon rarely observed in this structure type, which is considered as one of the most stable among the Zr carboxylate MOFs. Eventually, optimization of the amount of fluorescent ligand within the structure allowed combining a decent microposity ( SBET > 750 m2·g-1) and a high stability even in boiling water, together with a high fluorescence quantum yield (>30%).

5.
Inorg Chem ; 58(1): 99-105, 2019 Jan 07.
Artigo em Inglês | MEDLINE | ID: mdl-30525528

RESUMO

The structures of two lamellar silver thiolate coordination polymers [Ag( p-SPhCO2H)] n (1) and [Ag( p-SPhCO2Me)] n (2) are described for the first time. Their inorganic part is composed of distorted Ag3S3 honeycomb networks separated by noninterpenetrated thiolate ligands. The main difference between the two compounds arises from dimeric hydrogen bonds present for the carboxylic acids. Indepth photophysical studies show that the silver thiolates exhibit multiemission properties, implying luminescence thermochromism. More interestingly, the synthesis of a heterometallic lamellar compound, [Ag0.85Cu0.15( p-SPhCO2H)] n (3), allows to obtain mixed metal thiolate coordination polymers and to tune the photophysical properties with the excitation wavelengths from a green vibronic luminescence to a single red emission band.

6.
Inorg Chem ; 57(5): 2736-2743, 2018 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-29446926

RESUMO

Two copper(II)-carboxylate disulfide coordination polymers [Cu2((O2CPhS)2)2(H2O)2] n (1, 2) and one copper(I)-thiolate coordination polymer [Cu( p-SPhCO2H)] n (3) have been synthesized using either the 4-mercaptobenzoic acid (HSPhCO2H) or the 4,4'-dithiodibenzoic acid ((SPhCO2H)2) as ligand. These three compounds were characterized by X-ray diffraction, IR, and thermogravimetric analyses. Compounds 1 and 2 are polymorphs with the presence, for both, of dinuclear paddle-wheel copper(II)-carboxylates. In 1, the adjacent dimeric Cu2 units are linked by two (O2CPhS)2 ligands generating a cyclic loop chain, and in 2, each pair of Cu (II) atoms is linked by four ligands to create 2D networks, that are 2-fold interpenetrated. Compound 3 presents a lamellar structure, with an exceptional thermal and chemical stability, and exhibits intrinsic multiple emission between 485 and 660 nm. The different intensities of these bands generate a cyclic luminescence thermochromism from yellow to green to yellow.

7.
Inorg Chem ; 56(14): 8423-8429, 2017 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-28671830

RESUMO

A novel Zr(IV) dicarboxylate metal organic framework (MOF) built up from an s-tetrazine derived ligand was prepared. This solid, which exhibits a diamond type network, combines a good stability in water, a structural flexibility, and fluorescence properties thanks to the organic ligand. It is noteworthy that this fluorescence is quenched when exposed to electron-rich molecules in solution, such as amines or phenol, this phenomenon being associated with the adsorption of the quencher, as unambiguously proven by X-ray diffraction (XRD) analysis. Finally, the quenching efficiency is shown to be governed not only by electronic and steric factors but also by the relative polarity of the solvent, the MOF, and the quencher. This work thus suggests that it is possible to develop new MOF-based sensors presenting in a given medium (such as water) highly selective responses.

8.
Inorg Chem ; 55(15): 7192-9, 2016 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-27328065

RESUMO

The reactivity of 2,5-dihydroxyterephthalic acid (H4DOBDC) with titanium(IV) precursors was thoroughly investigated for the synthesis of metal-organic frameworks under solvothermal conditions. Four crystalline phases were isolated whose structures were studied by a combination of single-crystal or powder X-ray diffraction and solid-state NMR. The strong coordination ability of the phenolate moieties was found to favor the formation of isolated TiO6 octahedra bearing solely organic ligands in the resulting structures, unless hydrothermal conditions and precondensed inorganic precursors are used. It is worth noting that these solids strongly absorb visible light, as a consequence of the ligand-to-metal charge transfer (LMCT) arising from Ti-phenolate bonds. Preliminary photocatalytic tests suggest that one compound, namely, MIL-167, presents a higher activity for hydrogen evolution than the titanium carboxylate MIL-125-NH2 but that such an effect cannot be directly correlated with its improved light absorption feature.

9.
Angew Chem Int Ed Engl ; 54(45): 13297-301, 2015 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-26457412

RESUMO

A novel Zr-chain based MOF, namely MIL-163, was designed and successfully synthesized using a bis-1,2,3-trioxobenzene ligand. Endowed with large square-shaped channels of 12 Šwidth, it shows remarkable water uptake (ca. 0.6 cm(3) g(-1) at saturating vapor pressure) and a remarkable stability in simulated physiological media, where archetypical Zr carboxylate MOFs readily degrade.

10.
Angew Chem Int Ed Engl ; 54(12): 3664-8, 2015 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-25655768

RESUMO

The synthesis of the commercially available aluminum fumarate sample A520 has been optimized and its structure analyzed through a combination of powder diffraction, solid-state NMR spectroscopy, molecular simulation, IR spectroscopy, and thermal analysis. A520 is an analogue of the MIL-53(Al)-BDC solid, but with a more rigid behavior. The differences between the commercial and the optimized samples in terms of defects have been investigated by in situ IR spectroscopy and correlated to their catalytic activity for ethanol dehydration.

11.
Chem Sci ; 15(12): 4374-4385, 2024 Mar 20.
Artigo em Inglês | MEDLINE | ID: mdl-38516069

RESUMO

We report the first synthesis of the mixed-metal chabazite-type AlxGa1-xPO4-34(mim) solid solution, containing 1-methylimidazolium, mim, as structure directing agent (SDA), from the parent mixed-metal oxide solid solution, γ-(AlxGa1-x)2O3. This hitherto unreported family of materials exhibits complex disorder, arising from the possible distributions of cations over available sites, the orientation of the SDA and the presence of variable amounts of water, which provides a prototype for understanding structural subtleties in nanoporous materials. In the as-made forms of the phosphate frameworks, there are three crystallographically distinct metal sites: two tetrahedral MO4 and one octahedral MO4F2 (M = Al, Ga). A combination of solid-state NMR spectroscopy and periodic DFT calculations reveals that the octahedral site is preferentially occupied by Al and the tetrahedral sites by Ga, leading to a non-random distribution of cations within the framework. Upon calcination to the AlxGa1-xPO4-34 framework, all metal sites are tetrahedral and crystallographically equivalent in the average R3̄ symmetry. The cation distribution was explored by 31P solid-state NMR spectroscopy, and it is shown that the non-random distribution demonstrated to exist in the as-made materials would be expected to give remarkably similar patterns of peak intensities to a random distribution owing to the change in average symmetry in the calcined materials.

12.
Phys Chem Chem Phys ; 15(22): 8606-15, 2013 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-23439974

RESUMO

The adsorption of N/S-containing heterocyclic organic molecules in the flexible iron(III) terephthalate MIL-53, Fe(III)(OH)(0.6)F(0.4)(O2C-C6H4-CO2)·(H2O), from the liquid phase was studied with in situ energy dispersive X-ray diffraction (EDXRD), in order to follow the adsorption-induced expansion of the structure. For comparison with the diffraction data, liquid phase adsorption isotherms were recorded for uptake of benzothiophene, benzothiazole and indole in isopropanol and in heptane. The solvent not only influences pore opening but is also a competing guest. The in situ EDXRD experiments allow the kinetics of guest uptake and the competition with solvent to be monitored directly. Indole uptake is limited; this adsorbate is barely capable of opening the closed, either hydrated or dehydrated, MIL-53(Fe) structure, or of penetrating the isopropanol-containing material in the concentration range under study. When isopropanol is used as a solvent, the guest molecules benzothiophene and benzothiazole must be present at a certain threshold concentration before substantial adsorption into the metal-organic framework takes place, eventually resulting in full opening of the structure. The fully expanded structures of benzothiophene or benzothiazole loaded MIL-53(Fe) materials have Imcm symmetry and a unit cell volume of ca. 1600 Å(3), and upon uptake of the guest molecules by the closed form (unit cell volume ~1000 Å(3)) no intermediate crystalline phases are seen. Successful uptake by MIL-53(Fe) requires that the adsorbate is primarily a good hydrogen bond acceptor; additionally, based on UV-visible spectroscopy, a charge-transfer interaction between the S atoms of benzothiophene and the aromatic rings in the MOF pore wall is proposed.


Assuntos
Compostos Férricos/química , Compostos Heterocíclicos/química , Adsorção , Propriedades de Superfície , Difração de Raios X
13.
iScience ; 26(2): 106016, 2023 Feb 17.
Artigo em Inglês | MEDLINE | ID: mdl-36798445

RESUMO

The d10 coinage metal coordination polymers (CPs) are known to display photophysical properties which can be tuned depending on the functionality of the ligand. Three new CPs made of d10 coinage metals and methyl thiosalicylate, [M(o-SPhCO2Me)]n (M = Cu, Ag, Au), are reported. They are all constructed from one-dimensional metal-sulfur networks, in which Cu and Ag are three-coordinated to sulfur atoms, whereas Au is only two-coordinated. It results that both Cu(I) and Ag(I) CPs show orange photoemission at room temperature, and the Au(I) one exhibits near-infrared emission at low temperatures. The intense orange-emissive Ag(I) CP and the blue-emissive coumarin 120 have been mixed in an organic matrix, the polyvinylidene fluoride (PVDF), to form a dual luminescent flexible composite film. This film, evaluated for thermometry, shows great sensitivity for temperatures up to 100°C, a temperature never reached with non-lanthanide-based CPs.

14.
J Mater Chem A Mater ; 11(46): 25465-25483, 2023 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-38037625

RESUMO

Porphyrin based Metal-Organic Frameworks (MOFs) have generated high interest because of their unique combination of light absorption, electron transfer and guest adsorption/desorption properties. In this study, we expand the range of available MOF materials by focusing on the seldom studied porphyrin ligand H10TcatPP, functionalized with tetracatecholate coordinating groups. A systematic evaluation of its reactivity with M(iii) cations (Al, Fe, and In) led to the synthesis and isolation of three novel MOF phases. Through a comprehensive characterization approach involving single crystal and powder synchrotron X-ray diffraction (XRD) in combination with the local information gained from spectroscopic techniques, we elucidated the structural features of the solids, which are all based on different inorganic secondary building units (SBUs). All the synthesized MOFs demonstrate an accessible porosity, with one of them presenting mesopores and the highest reported surface area to date for a porphyrin catecholate MOF (>2000 m2 g-1). Eventually, the redox activity of these solids was investigated in a half-cell vs. Li with the aim of evaluating their potential as electrode positive materials for electrochemical energy storage. One of the solids displayed reversibility during cycling at a rather high potential (∼3.4 V vs. Li+/Li), confirming the interest of redox active phenolate ligands for applications involving electron transfer. Our findings expand the library of porphyrin-based MOFs and highlight the potential of phenolate ligands for advancing the field of MOFs for energy storage materials.

15.
J Mater Chem B ; 11(14): 3195-3211, 2023 04 05.
Artigo em Inglês | MEDLINE | ID: mdl-36951043

RESUMO

Among a plethora of drug nanocarriers, biocompatible nanoscale metal-organic frameworks (nanoMOFs) with a large surface area and an amphiphilic internal microenvironment have emerged as promising drug delivery platforms, mainly for cancer therapy. However, their application in biomedicine still suffers from shortcomings such as a limited chemical and/or colloidal stability and/or toxicity. Here, we report the design of a hierarchically porous nano-object (denoted as USPIO@MIL) combining a benchmark nanoMOF (that is, MIL-100(Fe)) and ultra-small superparamagnetic iron oxide (USPIO) nanoparticles (that is, maghemite) that is synthesized through a one-pot, cost-effective and environmentally friendly protocol. The synergistic coupling of the physico-chemical and functional properties of both nanoparticles confers to these nano-objects valuable features such as high colloidal stability, high biodegradability, low toxicity, high drug loading capacity as well as stimuli-responsive drug release and superparamagnetic properties. This bimodal MIL-100(Fe)/maghemite nanocarrier once loaded with anti-tumoral and anti-inflammatory drugs (doxorubicin and methotrexate) shows high anti-inflammatory and anti-tumoral activities. In addition, the USPIO@MIL nano-object exhibits excellent relaxometric properties and its applicability as an efficient contrast agent for magnetic resonance imaging is herein demonstrated. This highlights the high potential of the maghemite@MOF composite integrating the functions of imaging and therapy as a theranostic anti-inflammatory formulation.


Assuntos
Estruturas Metalorgânicas , Estruturas Metalorgânicas/química , Nanomedicina , Anti-Inflamatórios/farmacologia , Nanopartículas Magnéticas de Óxido de Ferro
16.
Chem Commun (Camb) ; 58(58): 8081-8084, 2022 Jul 19.
Artigo em Inglês | MEDLINE | ID: mdl-35765973

RESUMO

A new tridimensional metal-organic chalcogenolate, made of a 1,3-benzenedithiolate bridging ligand and Ag(I), [Ag2(1,3-BDT)]n, is reported. This coordination polymer has good thermal stability in air and displays both photoluminescence properties and a second harmonic generation response.

17.
Chemistry ; 17(25): 7069-79, 2011 Jun 14.
Artigo em Inglês | MEDLINE | ID: mdl-21557349

RESUMO

A comprehensive, time-resolved, energy-dispersive X-ray diffraction study of the uptake of liquid alcohols (methanol, ethanol, propan-1-ol and propan-2-ol) by the flexible metal-organic framework solid MIL-53(Fe)[H(2)O] is reported. In the case of the primary alcohols, a fluorinated version of the MIL-53(Fe) host (C2/c symmetry V ca. 1000 Å(3)), in which a fraction of framework hydroxides are replaced by fluoride, shows uptake of alcohols to give initially a partially expanded phase (C2/c symmetry, V ca. 1200 Å(3)) followed by an expanded form of the material (either Imcm or Pnam symmetry, V ca. 1600 Å(3)). In the case of methanol-water mixtures, the EDXRD data show that the partially open intermediate phase undergoes volume expansion during its existence, before switching to a fully open structure if concentrated methanol is used; analogous behaviour is seen if the initial guest is propan-2-ol, which then is replaced by pyridine, where a continuous shift of Bragg peaks within C2/c symmetry is observed. In contrast to the partially fluorinated materials, the purely hydroxylated host materials show little tendency to stabilise partially open forms of MIL-53(Fe) with primary alcohols and the kinetics of guest introduction are markedly slower without the framework fluorination: this is exemplified by the exchange of water by propan-2-ol, where a partially open C2/c phase is formed in a step-wise manner. Our study defines the various possible pathways of liquid-phase uptake of molecular guests by flexible solid MIL-53(Fe).

18.
Inorg Chem ; 49(21): 9852-62, 2010 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-20923169

RESUMO

A new porous metal-organic framework (MOF)-type aluminum pyromellitate (MIL-121 or Al(OH)[H(2)btec]·(guest), (guest = H(2)O, H(4)btec = pyromellitic acid) has been isolated by using a high-throughput synthesis method under hydrothermal conditions. Its structure was determined from powder X-ray diffraction analysis using synchrotron radiation (Soleil, France) and exhibits a network closely related to that of the MIL-53 series. It is a three-dimensional (3D) framework containing one-dimensional (1D) channels delimited by infinite trans-connected aluminum-centered octahedra AlO(4)(OH)(2) linked through the pyromellitate ligand. Here the organic ligand acts as tetradendate linker via two of the carboxylate groups. The two others remain non-bonded in their protonated form, and this constitutes a rare case of the occurrence of both bonding and non-bonding organic functionalities of the MOF family. The non-coordinated -COOH groups points toward the channels to get them an open form configuration. Within the tunnels are located unreacted pyromellitic acid and water species, which are evacuated upon heating, and a porous MIL-121 phase is obtained with a Brunauer-Emmett-Teller (BET) surface area of 162 m(2) g(-1). MIL-121 has been characterized by IR, thermogravimetry (TG) analyses, and solid state NMR spectroscopy employing a couple of two-dimensional (2D) techniques such as (1)H-(1)H SQ-DQ BABA, (1)H-(1)H SQ-SQ RFDR, (27)Al{(1)H} CPHETCOR and (27)Al MQMAS.


Assuntos
Compostos de Alumínio/síntese química , Ácidos Carboxílicos/síntese química , Compostos de Alumínio/química , Ácidos Carboxílicos/química , Cristalografia por Raios X , Modelos Moleculares , Porosidade , Propriedades de Superfície
19.
Chem Commun (Camb) ; 56(70): 10159-10162, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32744549

RESUMO

Zirconium tetramandelate (2-hydroxy-2-phenylacetate) has been used for selective gravimetric analysis of zirconium for over 70 years. Herein its crystal structure is reported from synchrotron powder X-ray diffraction and 13C solid-state NMR. The complex is a rare example of isolated zirconium cations, rather than the clusters prevalent in aqueous solutions.

20.
Chem Sci ; 11(26): 6815-6823, 2020 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-33033596

RESUMO

Obtaining transparent glasses made of functional coordination polymers (CPs) represents a tremendous opportunity for optical applications. In this context, the first transparent and red-emissive glasses of gold thiolate CPs have been obtained by simply applying mechanical pressure to amorphous powders of CPs. The three gold-based CP glasses are composed of either thiophenolate [Au(SPh)] n , phenylmethanethiolate [Au(SMePh)] n or phenylethanethiolate [Au(SEtPh)] n . The presence of a longer alkyl chain between the thiolate and the phenyl ring led to the formation of glass with higher transparency. The glass transitions, measured by thermomechanical analysis (TMA), occurred at lower temperature for CPs with longer alkyl chains. In addition, all three gold thiolate glasses exhibit red emission at 93 K and one of them, [Au(SMePh)] n , remains luminescent even at room temperature. An in-depth structural study of the amorphous gold thiolates by XRD, PDF and EXAFS analysis showed that they are formed of disordered doubly interpenetrated helical chains. These d10 metal-based compounds represent the first examples of transparent and luminescent CP glasses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA